34 research outputs found

    Trapping redox partnerships in oxidant-sensitive proteins with a small, thiol-reactive cross-linker

    Get PDF
    A broad range of redox-regulated proteins undergo reversible disulfide bond formation on oxidation-prone cysteine residues. Heightened reactivity of the thiol groups in these cysteines also increases susceptibility to modification by organic electrophiles, a property that can be exploited in the study of redox networks. Here, we explored whether divinyl sulfone (DVSF), a thiol-reactive bifunctional electrophile, cross-links oxidant-sensitive proteins to their putative redox partners in cells. To test this idea, previously identified oxidant targets involved in oxidant defense (namely, peroxiredoxins, methionine sulfoxide reductases, sulfiredoxin, and glutathione peroxidases), metabolism, and proteostasis were monitored for cross-link formation following treatment of Saccharomyces cerevisiae with DVSF. Several proteins screened, including multiple oxidant defense proteins, underwent intermolecular and/or intramolecular cross-linking in response to DVSF. Specific redox-active cysteines within a subset of DVSF targets were found to influence cross-linking; in addition, DVSF-mediated cross-linking of its targets was impaired in cells first exposed to oxidants. Since cross-linking appeared to involve redox-active cysteines in these proteins, we examined whether potential redox partners became cross-linked to them upon DVSF treatment. Specifically, we found that several substrates of thioredoxins were cross-linked to the cytosolic thioredoxin Trx2 in cells treated with DVSF. However, other DVSF targets, like the peroxiredoxin Ahp1, principally formed intra-protein cross-links upon DVSF treatment. Moreover, additional protein targets, including several known to undergo S-glutathionylation, were conjugated via DVSF to glutathione. Our results indicate that DVSF is of potential use as a chemical tool for irreversibly trapping and discovering thiol-based redox partnerships within cells

    Brain structural deficits and working memory fMRI dysfunction in young adults who were diagnosed with ADHD in adolescence.

    Get PDF
    When adolescents with ADHD enter adulthood, some no longer meet disorder diagnostic criteria but it is unknown if biological and cognitive abnorma lities persist. We tested the hypothesis that people diagnosed with ADHD during adolescence present residual brain abnormalities both in brain structure and in working memory brain function. 83 young adults (aged 20-24 years) from the Northern Finland 1986 Birth Cohort were classified as diagnosed with ADHD in adolescence (adolescence ADHD, n = 49) or a control group (n = 34). Only one patient had received medication for ADHD. T1-weighted brain scans were acquired and processed in a voxel-based analysis using permutation-based statistics. A sub-sample of both groups (ADHD, n = 21; controls n = 23) also performed a Sternberg working memory task whilst acquiring fMRI data. Areas of structural difference were used as a region of interest to evaluate the implications that structural abnormalities found in the ADHD group might have on working memory function. There was lower grey matter volume bilaterally in adolescence ADHD participants in the caudate (p < 0.05 FWE corrected across the whole brain) at age 20-24. Working memory was poorer in adolescence ADHD participants, with associated failure to show normal load-dependent caudate activation. Young adults diagnosed with ADHD in adolescence have structural and functional deficits in the caudate associated with abnormal working memory function. These findings are not secondary to stimulant treatment, and emphasise the importance of taking a wider perspective on ADHD outcomes than simply whether or not a particular patient meets diagnostic criteria at any given point in time.This work was supported by an Academy of Finland Award to Dr Veijola; a Sigrid Juselius Foundation grant to Dr Moilanen; a Medical Research Council fellowship to Dr Murray (G0701911); a NARSAD, the Brain and Behavior Research Fund independent investigator award to Dr Miettunen; an Oon Khye Beng Ch'Hia Tsio Studentships in Preventative Medicine awarded by Downing College, Cambridge to Dr Roman-Urrestarazu together with a Becas Chile Doctoral Grant awarded by CONICYT, an Academy of Finland grant and Finnish Medical Foundation grant to Dr Kiviniemi, and an award from the Signe and Ane Gyllenberg Foundation, Finland, to Dr MÀki.. The work was partially conducted with the University of Cambridge Behavioural and Clinical Neuroscience Centre, supported by a joint award from the Medical Research Council (G1000183) and Wellcome Trust (093875/Z/10Z).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00787-015-0755-

    Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions

    Get PDF
    The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure

    Functions of the tRNA splicing endonuclease and other adventures in RNA processing

    No full text
    The tRNA splicing endonuclease (TSEN), has been studied for over three decades for its function in tRNA splicing. However, this enzyme has other functions that are just beginning to be characterized. Mutations in TSEN cause the neuronal disease pontocerebellar hypoplasia (PCH) that is characterized by atrophy of the cerebellum and pons, overall developmental failure, and usually results in death before adolescence. How mutations in TSEN cause these neuronal defects and disease is not understood. In yeast, TSEN has another essential function that is independent of tRNA splicing and is still unknown. In this thesis I strived to understand the other function of the TSEN complex. TSEN has one mRNA target in yeast which led me to the hypothesis that TSEN could cleave other mRNAs. I used Parallel Analysis of RNA Ends (PARE) to identify other mRNA substrates of TSEN. I found TSEN cleaves a subset of mRNAs that encode mitochondrial localized proteins. In vivo and in vitro analysis determine TSEN recognizes an A before its cleavage sites. We identified some sequence and localization requirements for TSEN targets but it is likely other factors play a role in substrate recognition such as structure of the mRNA target. Overall we used PARE to identify a novel endonuclease decay pathway, termed TED, in which TSEN can degrade a select group of mRNAs. Yeast genetic screens were used to complement our RNAseq approach to finding the other essential function of TSEN. A spontaneous suppressor screen identified mutations in Dbr1 as suppressors of only the other essential function a mutant sen2. Because mutations in Dbr1 could only complement a partially functional TSEN complex and the catalytic activity of Dbr1 must be lost for this suppression, we propose that Dbr1 and TSEN complete for a common substrate. Through RNAseq, we discovered that loss of the other essential function of TSEN triggers the Gcn4 response. This response is protective in our sen2 mutant and when Dbr1 is mutated in addition to sen2, the Gcn4 response is reduced as TSEN now has no competition for substrate to perform its essential function. As TSEN is involved in mRNA decay through the TED pathway, I wondered what enzymes could be involved in the degradation of these cleavage products. To investigate this, we used PARE to define targets of the exonuclease Dxo1 and the kinase Trl1. This revealed Dxo1 can “nibble” downstream of endonuclease cleavage and decapping but that its main function is in processing the 25S’ to the 25S rRNA in the cytoplasm. Trl1 can also act downstream of endonuclease decay in the TED pathway by phosphorylating the 5’ end of TSEN cleavage products. Though the other essential function of TSEN remains elusive, this research uncovered the participation of TSEN in mRNA decay and the functions of downstream enzymes as well as the identification of a potential competitor, Dbr1

    New insights into RNA processing by the eukaryotic tRNA splicing endonuclease

    No full text
    Through its role in intron cleavage, tRNA splicing endonuclease (TSEN) plays a critical function in the maturation of intron-containing pre-tRNAs. The catalytic mechanism and core requirement for this process is conserved between archaea and eukaryotes, but for decades, it has been known that eukaryotic TSENs have evolved additional modes of RNA recognition, which have remained poorly understood. Recent research identified new roles for eukaryotic TSEN, including processing or degradation of additional RNA substrates, and determined the first structures of pre-tRNA-bound human TSEN complexes. These recent discoveries have changed our understanding of how the eukaryotic TSEN targets and recognizes substrates. Here, we review these recent discoveries, their implications, and the new questions raised by these findings

    Plasma 1‐carbon metabolites and academic achievement in 15‐yr‐old adolescents

    No full text
    Academic achievement in adolescents is correlated with 1-carbon metabolism (1-CM), as folate intake is positively related and total plasma homocysteine (tHcy) negatively related to academic success. Because another 1-CM nutrient, choline is essential for fetal neurocognitive development, we hypothesized that choline and betaine could also be positively related to academic achievement in adolescents. In a sample of 15-yr-old children (n = 324), we measured plasma concentrations of homocysteine, choline, and betaine and genotyped them for 2 polymorphisms with effects on 1-CM, methylenetetrahydrofolate reductase (MTHFR) 677C>T, rs1801133, and phosphatidylethanolamine N-methyltransferase (PEMT), rs12325817 (G>C). The sum of school grades in 17 major subjects was used as an outcome measure for academic achievement. Lifestyle and family socioeconomic status (SES) data were obtained from questionnaires. Plasma choline was significantly and positively associated with academic achievement independent of SES factors (paternal education and income, maternal education and income, smoking, school) and of folate intake (P = 0.009, R(2) = 0.285). With the addition of the PEMT rs12325817 polymorphism, the association value was only marginally changed. Plasma betaine concentration, tHcy, and the MTHFR 677C>T polymorphism did not affect academic achievement in any tested model involving choline. Dietary intake of choline is marginal in many adolescents and may be a public health concern.—Nilsson, T. K., Hurtig-Wennlöf, A., Sjöström, M., Herrmann, W., Obeid, R., Owen, J. R., Zeisel, S. Plasma 1-carbon metabolites and academic achievement in 15-yr-old adolescents

    Smoking in pregnancy, adolescent mental health and cognitive performance in young adult offspring: results from a matched sample within a Finnish cohort

    No full text
    Abstract Background The association between prenatal exposure to maternal cigarette smoking (PEMCS) and adult cognition is debated, including if there are differences according to sex. We aimed to determine if there are associations between PEMCS and cognition in early adulthood in men and women and examine if observed associations were mediated by adolescent mental health factors that are associated with cognition, namely psychotic-like experiences (PLEs), inattention and hyperactivity, and other externalizing behaviors. Methods Participants were 471 individuals drawn from the general population-based Northern Finland 1986 Birth Cohort (NFBC 1986) followed up from pregnancy and birth to early adulthood; individuals with PEMCS were matched with those without PEMCS by socioeconomic and demographic factors. Cognitive performance in adulthood was assessed with a range of tests and their association with PEMCS was measured by sex using hierarchical linear regression, unadjusted and then controlling for potential confounders, mediators and moderators, including adolescent mental health factors. Results There were no associations between PEMCS and cognitive scores in females. In males, there were associations with vocabulary (beta = -0.444, 95% CI: -0.783, -0.104) and matrix reasoning (beta = -0.379, 95% CI: -0.711, -0.047). Conclusions While associations between PEMCS and cognition were limited, observed findings with measures of general intelligence in males contribute to suggestions of differences in response to PEMCS by sex. Furthermore, observed associations may be partly mediated by earlier inattention and hyperactivity. Findings add support to efforts aimed to eliminate smoking in pregnancy

    An Alzheimer’s Disease-Derived Biomarker Signature Identifies Parkinson’s Disease Patients with Dementia

    No full text
    <div><p>Biomarkers from multiple modalities have been shown to correlate with cognition in Parkinson’s disease (PD) and in Alzheimer’s disease (AD). However, the relationships of these markers with each other, and the use of multiple markers in concert to predict an outcome of interest, are areas that are much less explored. Our objectives in this study were (1) to evaluate relationships among 17 biomarkers previously reported to associate with cognition in PD or AD and (2) to test performance of a five-biomarker classifier trained to recognize AD in identifying PD with dementia (PDD). To do this, we evaluated a cross-sectional cohort of PD patients (n = 75) across a spectrum of cognitive abilities. All PD participants had 17 baseline biomarkers from clinical, genetic, biochemical, and imaging modalities measured, and correlations among biomarkers were assessed by Spearman’s rho and by hierarchical clustering. We found that internal correlation among all 17 candidate biomarkers was modest, showing a maximum pairwise correlation coefficient of 0.51. However, a five-marker subset panel derived from AD (CSF total tau, CSF phosphorylated tau, CSF amyloid beta 42, <i>APOE</i> genotype, and SPARE-AD imaging score) discriminated cognitively normal PD patients vs. PDD patients with 80% accuracy, when employed in a classifier originally trained to recognize AD. Thus, an AD-derived biomarker signature may identify PDD patients with moderately high accuracy, suggesting mechanisms shared with AD in some PDD patients. Based on five measures readily obtained during life, this AD-derived signature may prove useful in identifying PDD patients most likely to respond to AD-based crossover therapies.</p></div
    corecore