2 research outputs found

    FIMED: Flexible management of biomedical data

    Get PDF
    Background and objectives: In the last decade, clinical trial management systems have become an essential support tool for data management and analysis in clinical research. However, these clinical tools have design limitations, since they are currently not able to cover the needs of adaptation to the continuous changes in the practice of the trials due to the heterogeneous and dynamic nature of the clinical research data. These systems are usually proprietary solutions provided by vendors for specific tasks. In this work, we propose FIMED, a software solution for the flexible management of clinical data from multiple trials, moving towards personalized medicine, which can contribute positively by improving clinical researchers quality and ease in clinical trials. Methods: This tool allows a dynamic and incremental design of patients’ profiles in the context of clinical trials, providing a flexible user interface that hides the complexity of using databases. Clinical researchers will be able to define personalized data schemas according to their needs and clinical study specifications. Thus, FIMED allows the incorporation of separate clinical data analysis from multiple trials. Results: The efficiency of the software has been demonstrated by a real-world use case for a clinical assay in Melanoma disease, which has been indeed anonymized to provide a user demonstration. FIMED currently provides three data analysis and visualization components, guaranteeing a clinical exploration for gene expression data: heatmap visualization, clusterheatmap visualization, as well as gene regulatory network inference and visualization. An instance of this tool is freely available on the web at https://khaos.uma.es/fimed. It can be accessed with a demo user account, “researcher”, using the password “demo”. (...)Funding for open access charge: Universidad de Málaga / CBUA. This work has been partially funded by the Spanish Ministry of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and Andalusian PAIDI program with grant P18-RT2799

    A deep learning LSTM-based approach for forecasting annual pollen curves: Olea and Urticaceae pollen types as a case study

    Get PDF
    Airborne pollen can trigger allergic rhinitis and other respiratory diseases in the synthesised population, which makes it one of the most relevant biological contaminants. Therefore, implementing accurate forecast systems is a priority for public health. The current forecast models are generally useful, but they falter when long time series of data are managed. The emergence of new computational techniques such as the LSTM algorithms could constitute a significant improvement for the pollen risk assessment. In this study, several LSTM variants were applied to forecast monthly pollen integrals in Málaga (southern Spain) using meteorological variables as predictors. Olea and Urticaceae pollen types were modelled as proxies of different annual pollen curves, using data from the period 1992–2022. The aims of this study were to determine the LSTM variants with the highest accuracy when forecasting monthly pollen integrals as well as to compare their performance with the traditional pollen forecast methods. The results showed that the CNN-LSTM were the most accurate when forecasting the monthly pollen integrals for both pollen types. Moreover, the traditional forecast methods were outperformed by all the LSTM variants. These findings highlight the importance of implementing LSTM models in pollen forecasting for public health and research applications.Funding for open Access charge: Universidad de Málaga / CBUA. This work has been partially funded by the Spanish Ministry of Science and Innovation via grant (funded by MCIN/AEI/10.13039/5011 00011033/) PID2020-112540RB-C41, AETHER-UMA (A smart data holistic approach for context-aware data analytics: semantics and context exploitation), and grant ‘‘Environmental and Biodiversity Climate Change Lab (EnBiC2-Lab)’’ LIFEWATCH-2019-11-UMA-01 (AEI/FEDER, UE). A. Picornell has been supported by a postdoctoral grant financed by the Consejería de Transformación Económica, Industria, Conocimiento Universidades (Junta de Andalucía, POSTDOC_21_00056)
    corecore