5 research outputs found

    Reproducibility and intratumoral heterogeneity of the PAM50 breast cancer assay

    Get PDF
    Background: The PAM50 assay is used routinely in clinical practice to determine breast cancer prognosis and management; however, research assessing how technical variation and intratumoral heterogeneity contribute to misclassification and reproducibility of these tests is limited. Methods: We evaluated the impact of intratumoral heterogeneity on the reproducibility of results for the PAM50 assay by testing RNA extracted from formalin-fixed paraffin embedded breast cancer blocks sampled at distinct spatial locations. Samples were classified according to intrinsic subtype (Luminal A, Luminal B, HER2-enriched, Basal-like, or Normal-like) and risk of recurrence with proliferation score (ROR-P, high, medium, or low). Intratumoral heterogeneity and technical reproducibility (replicate assays on the same RNA) were assessed as percent categorical agreement between paired intratumoral and replicate samples. Euclidean distances between samples, calculated across the PAM50 genes and the ROR-P score, were compared for concordant vs. discordant samples. Results: Technical replicates (N = 144) achieved 93% agreement for ROR-P group and 90% agreement on PAM50 subtype. For spatially distinct biological replicates (N = 40 intratumoral replicates), agreement was lower (81% for ROR-P and 76% for PAM50 subtype). The Euclidean distances between discordant technical replicates were bimodal, with discordant samples showing higher Euclidian distance and biologic heterogeneity. Conclusion: The PAM50 assay achieved very high technical reproducibility for breast cancer subtyping and ROR-P, but intratumoral heterogeneity is revealed by the assay in a small proportion of cases

    Prognostic significance of RNA-based TP53 pathway function among estrogen receptor positive and negative breast cancer cases

    Get PDF
    TP53 and estrogen receptor (ER) are essential in breast cancer development and progression, but TP53 status (by DNA sequencing or protein expression) has been inconsistently associated with survival. We evaluated whether RNA-based TP53 classifiers are related to survival. Participants included 3213 women in the Carolina Breast Cancer Study (CBCS) with invasive breast cancer (stages I–III). Tumors were classified for TP53 status (mutant-like/wildtype-like) using an RNA signature. We used Cox proportional hazards models to estimate covariate-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for breast cancer-specific survival (BCSS) among ER- and TP53-defined subtypes. RNA-based results were compared to DNA- and IHC-based TP53 classification, as well as Basal-like versus non-Basal-like subtype. Findings from the diverse (50% Black), population-based CBCS were compared to those from the largely white METABRIC study. RNA-based TP53 mutant-like was associated with BCSS among both ER-negatives and ER-positives (HR (95% CI) = 5.38 (1.84–15.78) and 4.66 (1.79–12.15), respectively). Associations were attenuated when using DNA- or IHC-based TP53 classification. In METABRIC, few ER-negative tumors were TP53-wildtype-like, but TP53 status was a strong predictor of BCSS among ER-positives. In both populations, the effect of TP53 mutant-like status was similar to that for Basal-like subtype. RNA-based measures of TP53 status are strongly associated with BCSS and may have value among ER-negative cancers where few prognostic markers have been robustly validated. Given the role of TP53 in chemotherapeutic response, RNA-based TP53 as a prognostic biomarker could address an unmet need in breast cancer

    TP53 Pathway Function, Estrogen Receptor Status, and Breast Cancer Risk Factors in the Carolina Breast Cancer Study

    Get PDF
    Background: TP53 and estrogen receptor (ER) both play essential roles in breast cancer development and progression, with recent research revealing cross-talk between TP53 and ER signaling pathways. Although many studies have demonstrated heterogeneity of risk factor associations across ER subtypes, associations by TP53 status have been inconsistent. Methods: This case-case analysis included incident breast cancer cases (47% Black) from the Carolina Breast Cancer Study (1993- 2013). Formalin-fixed paraffin-embedded tumor samples were classified for TP53 functional status (mutant-like/wild-type-like) using a validated RNA signature. For IHC-based TP53 status, mutant-like was classified as at least 10% positivity. We used two-stage polytomous logistic regression to evaluate risk factor heterogeneity due to RNA-based TP53 and/or ER, adjusting for each other and for PR, HER2, and grade. We then compared this with the results when using IHC-based TP53 classification. Results: The RNA-based classifier identified 55% of tumors as TP53 wild-type-like and 45% as mutant-like. Several hormonerelated factors (oral contraceptive use, menopausal status, age at menopause, and pre- and postmenopausal body mass index) were associated with TP53 mutant-like status, whereas reproductive factors (age at first birth and parity) and smoking were associated with ER status. Multiparity was associated with both TP53 and ER. When classifying TP53 status using IHC methods, no associations were observed with TP53. Associations observed with RNA-based TP53 remained after accounting for basal-like subtype. Conclusions: This case-case study found breast cancer risk factors associated with RNA-based TP53 and ER

    The Landscape of Immune Microenvironments in Racially Diverse Breast Cancer Patients

    Get PDF
    Background: Immunotherapy is a rapidly evolving treatment option in breast cancer; However, the breast cancer immune microenvironment is understudied in Black and younger (<50 years) patients. Methods: We used histologic and RNA-based immunoprofiling methods to characterize the breast cancer immune landscape in 1,952 tumors from the Carolina Breast Cancer Study (CBCS), a population-based study that oversampled Black (n ¼ 1,030) and young women (n ¼ 1,039). We evaluated immune response leveraging markers for 10 immune cell populations, compared profiles to those in The Cancer Genome Atlas (TCGA) Project [n ¼ 1,095 tumors, Black (n ¼ 183), and young women (n ¼ 295)], and evaluated in association with clinical and demographic variables, including recurrence. Results: Consensus clustering identified three immune clusters in CBCS (adaptive-enriched, innate-enriched, or immune-quiet) that varied in frequency by race, age, tumor grade and subtype; however, only two clusters were identified in TCGA, which were predominantly comprised of adaptive-enriched and innate-enriched tumors. In CBCS, the strongest adaptive immune response was observed for basal-like, HER2-positive (HER2þ), triple-negative breast cancer (TNBC), and high-grade tumors. Younger patients had higher proportions of adaptive-enriched tumors, particularly among estrogen receptor (ER)-negative (ER-) cases. Black patients had higher frequencies of both adaptive-enriched and innate-enriched tumors. Immune clusters were associated with recurrence among ER- tumors, with adaptive-enriched showing the best and innate-enriched showing the poorest 5-year recurrence-free survival. Conclusions: These data suggest that immune microenvironments are intricately related to race, age, tumor subtype, and grade. Impact: Given higher mortality among Black and young women, more defined immune classification using cell-type–specific panels could help explain higher recurrence and ultimately lead to target-able interventions

    Epidemiology of basal-like and luminal breast cancers among black women in the amber consortium

    Get PDF
    Background: Evidence suggests etiologic heterogeneity among breast cancer subtypes. Previous studies with six-marker IHC classification of intrinsic subtypes included small numbers of black women. Methods: Using centralized laboratory results for estrogen receptor (ER), progesterone receptor, HER2, proliferation marker, Ki-67, EGFR, and cytokeratin (CK)5/6, we estimated case-only and case. control ORs for established breast cancer risk factors among cases (n.2,354) and controls (n.2,932) in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium. ORs were estimated by ER status and intrinsic subtype using adjusted logistic regression. Results: Case-only analyses by ER status showed etiologic heterogeneity by age at menarche, parity (vs. nulliparity), and age at first birth. In case.control analyses for intrinsic subtype, increased body mass index and waist-to-hip ratio (WHR) were associated with increased risk of luminal A subtype, whereas older age at menarche and parity, regardless of breastfeeding, were associated with reduced risk. For basal-like cancers, parity without breastfeeding and increasing WHR were associated with increased risk, whereas breastfeeding and age ≥25 years at first birth were associated with reduced risk among parous women. Basal-like and ER-/ HER2+ subtypes had earlier age-at-incidence distribution relative to luminal subtypes. Conclusions: Breast cancer subtypes showed distinct etiologic profiles in theAMBERconsortium, a study of more than 5,000 black women with centrally assessed tumor biospecimens. Impact: Among black women, high WHR and parity without breastfeeding are emerging as important intervention points to reduce the incidence of basal-like breast cancer
    corecore