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Abstract

Background: Evidence suggests etiologic heterogeneity among breast cancer subtypes. Previous 

studies with six-marker immunohistochemical classification of intrinsic subtypes included small 

numbers of black women.

Methods: Using centralized laboratory results for estrogen receptor (ER), progesterone receptor 

(PR), human epidermal growth factor 2 (HER2), proliferation marker Ki-67, epidermal growth 

factor receptor (EGFR), and cytokeratin (CK)5/6, we estimated case-only and case-control odds 

ratios (ORs) for established breast cancer risk factors among cases (n=2,354) and controls (n 

=2,932) in the African American Breast Cancer Epidemiology and Risk (AMBER) consortium. 

ORs were estimated by ER status and intrinsic subtype using adjusted logistic regression.

Results: Case-only analyses by ER status showed etiologic heterogeneity by age at menarche, 

parity (versus nulliparity), and age at first birth. In case-control analyses for intrinsic subtype, 

increased body mass index (BMI) and waist-to-hip (WHR) ratio were associated with increased 

risk of luminal A subtype, while older age at menarche and parity, regardless of breastfeeding, 

were associated with reduced risk. For basal-like cancers, parity without breastfeeding and 

increasing WHR were associated with increased risk, whereas breastfeeding and age ≥ 25 years 

at first birth were associated with reduced risk among parous women. Basal-like and ER-/HER2+ 

subtypes had earlier age-at-incidence distribution relative to luminal subtypes.

Conclusions: Breast cancer subtypes show distinct etiologic profiles in the AMBER 

consortium, a study of over 5,000 black women with centrally assessed tumor biospecimens.

Impact: Among black women, high WHR and parity without breastfeeding are emerging as 

important intervention points to reduce the incidence of basal-like breast cancer.

INTRODUCTION

Basal-like breast cancer is an aggressive molecular subtype defined by a signature of 

genes, including those expressed in the basal layer of human breast tissue (1). Basal-like 

tumors typically have poor clinical outcomes and limited options for targeted treatment 

due to low or absent expression of estrogen receptor (ER), progesterone receptor (PR), and 

human epidermal growth factor receptor 2 (HER2) (2–7). Previous studies show that the 

relative frequency of basal-like tumors is highest among younger women and black women, 

especially premenopausal black women (8–11). Reproductive factors, such as parity and 

breastfeeding, have been shown to contribute to the risk of basal-like subtype, with parous 

women who do not breastfeed having an increased risk of estrogen receptor (ER) negative 

and triple-negative breast cancer (9, 12–14). Late age at menarche has been associated with 

reduced risk of ER-negative breast cancers among black women (15). Associations with 

other hormone-related risk factors, such as body mass index and oral contraceptive use, have 

been inconsistent across studies of black women (16–19).
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Accurate and reliable methods for determining breast tumor subtype are important in 

studies of risk factor heterogeneity. Most prior risk factor studies have relied on ER, 

PR, and HER2 status from the clinical record for classification of tumors as luminal A 

(ER+/HER2-), luminal B (ER+/HER2+), ER-/HER2+, and triple-negative (ER-/PR-/HER2-) 

(20–24). However, laboratory technical variation, changes in expression cutoff values, and 

intratumoral heterogeneity can contribute to outcome misclassification within this schema, 

particularly for luminal breast cancers. Moreover, reliance on triple negative status from 

the clinical record has resulted in misclassification of basal-like breast cancers in some 

studies (25–28). We recently showed that incorporating centrally-assayed ER, PR, HER2, 

Ki67, EGFR, and CK5/6 immunohistochemical (IHC)-surrogate classification improved 

subtype accuracy and produced subtype frequencies similar to those from the RNA-based 

PAM50 intrinsic subtype assay in the African American Breast Cancer and Risk (AMBER) 

Consortium (29).

Importantly, this consortium study of black women included a large fraction of younger 

women, resulting in a more than five-fold larger sample of basal-like breast cancers than 

previous studies (n = 691 basal-like breast cancers compared to n = 122 in Millikan et 

al. 2008) (9, 20–24). In this study we sought to improve the precision of risk factors 

associations for basal-like breast cancer in this population, and compare these estimates to 

those from previous studies of mostly white women.

METHODS

Study population.

The AMBER consortium includes black cases and controls from observational studies 

of breast cancer: the Carolina Breast Cancer Study (CBCS) (30), the Black Women’s 

Health Study (BWHS) (31), the Women’s Circle of Health Study (WCHS) (32, 33) and 

the Multi-Ethnic Cohort (MEC) (34). Centralized IHC for intrinsic subtype was performed 

only for CBCS, BWHS and WCHS; MEC participants were not included in the analysis. 

Sampling schema for each study have been reported previously (35). Each study was 

approved by institutional review boards at participating hospitals and academic institutions 

and conducted in accordance with U.S. Common Rule. Informed consent was obtained 

from each participant. Briefly, the CBCS is a population-based study of breast cancer cases 

in North Carolina that enrolled women in three phases (Phase 1: 1993–1996, Phase 2: 

1996–2001 and Phase 3: 2008–2013) and oversampled young and black women. The study 

identified cases via rapid case ascertainment and recruited controls using Division of Motor 

Vehicle and Medicare beneficiary lists. Controls were frequency matched by age and race. 

Phase 3 did not enroll controls; as a result, use of Phase 3 cases in this study is limited to our 

analyses of case-only ORs and age-at-incidence curves. Data collection included in-person 

interview and medical record abstraction. BWHS enrolled 59,000 cancer-free black women 

via a mailed questionnaire beginning in 1995 and have followed women through biennial 

questionnaire since. Breast cancer diagnoses are self-reported and confirmed via medical 

record linkage or through state cancer registries and the National Death Index. Three 

controls per case were included from the BWHS, frequency-matched to cases by 5-year 

age category. The WCHS is a case-control study initially conducted in metropolitan New 
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York City and later only in 10 counties in eastern New Jersey (NJ) (32). New York cases 

with incident breast cancer from hospitals that served large proportions of black cases and 

controls were identified through random digit dialing. Controls were frequency matched by 

age and recruitment site. In NJ, cases were identified through the NJ State Cancer Registry 

and controls using random digit dialing and community-based recruitment (33).

Eligible women for the present study included 1,559 cases from the CBCS (304 from Phase 

1, 29 from Phase 2, and 1,226 from Phase 3), 291 cases from the BWHS, and 504 cases 

from the WCHS. Controls included 788 from Phases 1 and 2 of the CBCS, 873 from the 

BWHS, and 1,271 from the WCHS. Characteristics of cases and controls are described in 

Supplemental Table 1.

Tumor biomarkers.

Eligible cases for the current analysis were women diagnosed with invasive breast cancer 

and for whom tumor tissue was available for centralized laboratory analysis (n=2,354). For 

all cases, IHC biomarker stains were carried out on paraffin-embedded tumor sections or 

tumor microarrays at the Translational Pathology Lab at the University of North Carolina 

at Chapel Hill using assay procedures and cutpoints as previously described (29). A 10% 

ER positivity threshold was used to delineate ER-positive versus -negative. Subtypes were 

defined using 6 biomarkers: luminal A (ER+ and/or PR+, Ki-67 < 7.1%), luminal B ( ER+ 

and/or PR+, Ki-67 ≥ 7.1%]), ER-/HER2+, or basal-like (ER- and PR- and HER2- and 

[EGFR+ or CK5/6+]). When ER+ cases were missing Ki-67 (333 cases from CBCS; 0 

cases from BWHS; 51 cases from WCHS), subtypes were defined using 5 biomarkers and 

included in case-control and case-only analyses: luminal A (ER+ and/or PR+ and grade 1 or 

grade 2), luminal B (ER+ and/or PR+ and grade 3), ER-/HER2+, or basal-like (ER- and PR- 

and HER2- and [EGFR+ or CK5/6+]). 20 cases were additionally missing grade, and were 

included only in analyses stratified on ER status.

Statistical analyses.

ORs were calculated as the measure of association between risk factor exposure and breast 

cancer subtype. Multivariable binomial logistic regression was used to calculate case-control 

and case-only ORs and 95% confidence intervals (CIs). Multivariable models were adjusted 

for age (continuous linear), first degree family history of breast cancer (yes or no), parity 

(nulliparous, 1 – 2 children, or ≥ 3 children), breastfeeding duration (never, < 6 months, 

or ≥ 6 months), and study (CBCS, WCHS, BWHS). We conducted sensitivity analyses 

of fully adjusted models (adjusting for all risk factors under consideration) and found the 

magnitude and direction of point estimates did not change appreciably; however, the width 

of confidence intervals was larger. P-values were two-sided with α = 0.05.

To compare the joint impact of parity and breastfeeding we used a composite variable 

categorizing parous women by breastfeeding status (1 or 2 children, never lactated; 3 or 

more children, never lactated; 1 or 2 children, ever lactated; 3 or more children, ever 

lactated) and calculated case-control ORs with nulliparous controls as the referent group.

Bimodality in age at diagnosis has been used to investigate etiologically distinct subtypes 

of breast cancer, therefore we assessed bimodal age-at-diagnosis distributions to evaluate for 
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etiological heterogeneity among intrinsic subtypes (36). We use two-component statistical 

mixture models to estimate the proportions of early-onset and late-onset cases within each of 

the intrinsic subtypes, as previously described (36, 37). Within each subtype we compared 

the fit of single-density models versus two-component mixture models. For each type of 

model we implemented both normal density and semi-nonparametric density models (adding 

polynomial multiplier to the normal distribution to allow for skewness and heavy tails in the 

distributions), resulting in a total of four models for each subtype. The four models fitted for 

each subtype were compared using Akaike information criterion (AIC) values, with smaller 

AIC values indicating a better fit. We identified the best fitting single-density model and the 

best fitting two-component mixture model, and then compared the goodness of fit between 

these two models using the difference in their AIC values (ΔAIC). ΔAIC >10 indicated 

a substantial difference in the goodness of fit between the two models. For each subtype 

we plotted the smoothed density curve estimated from the best model overlaid with the 

empirical age-at-diagnosis distribution (i.e. histogram) for early onset, late onset and overall 

distribution. All analyses were performed using SAS 9.4 (SAS Institute, Cary, NC) and R 

(version 3.4.3, R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Case-only odds ratios for ER-positive and ER-negative tumors.

Estrogen receptor is a strong marker of etiologic heterogeneity in previous studies of breast 

cancer in black and white women. To first establish the similarity of this dataset to previous 

studies with respect to ER heterogeneity, we evaluated case-only ORs for a range of 

risk factors comparing ER-negative tumors to ER-positive tumors. Multivariable ORs are 

presented in Table 1. Older age at menarche, increasing parity, age at first full term birth, 

and breastfeeding status showed etiologic heterogeneity by ER status. Family history, oral 

contraceptive use, BMI, and WHR did not show heterogeneity by ER status with ORs close 

to 1.

Case-control odds ratios for IHC intrinsic subtype.

Case-control ORs were estimated for subtype based on 6-marker central IHC (Table 2). 

Subtype distribution by study site has been previously reported (29). Luminal A subtype 

was positively associated with increasing BMI and increasing WHR. Older age at menarche 

and parity (versus nulliparity), among both women who breastfed and women who did 

not, were associated with reduced risk of luminal A subtype. The magnitude of point 

estimates for luminal B breast cancer were close to the null, except for family history 

of breast cancer, which was significantly associated with luminal B risk. The direction of 

associations for ER-/HER2+ tumors were similar to those for luminal A, with family history, 

oral contraceptive use and age ≥ 25 years at first birth strongly positively associated and 

parity with breastfeeding inversely associated with risk of ER-/HER2+. For basal-like breast 

cancer, increasing WHR (OR: 1.49, 95% CI: 1.00 – 2.21 for WHR 0.77 – 0.83; OR: 1.45, 

95% CI: 0.99 – 2.12 for WHR ≥ 0.84) and higher parity without breastfeeding (OR: 1.70, 

95% CI: 1.11 – 2.60 for 1 – 2 children and never breastfed, OR: 1.84, 95% CI: 1.17 – 2.90 

for 3+ children, never breastfed) were significantly associated with increased risk, while 

breastfeeding and age ≥ 25 years at first birth were protective among parous women.
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Case-only odds ratios for IHC intrinsic subtype.

Case-only ORs were calculated to allow evaluation of etiologic heterogeneity by 6-marker 

subtype. Risk factor profiles for luminal B, ER-/HER2+ and basal-like breast tumors were 

estimated relative to luminal A subtype (Table 3). Overall, consistent with case-control 

findings, the luminal A and luminal B subtypes showed similar risk factor profiles, 

demonstrated by the non-significant case-only ORs for luminal B tumors. Case-only 

analyses highlighted differences between luminal A and ER-/HER2+ and basal-like etiology. 

Longer breastfeeding duration was associated with decreased odds for both ER-/HER2+ and 

basal-like breast cancers relative to luminal A. Parity (versus nulliparity), particularly among 

women who did not breastfeed, was associated with higher odds of basal-like compared to 

luminal A subtype (OR: 3.04, 95% CI: 2.11 – 4.37 for 1 – 2 children, never breastfed). 

Similar to case-control analyses, age ≥ 25 years at first birth was protective for basal-like 

cancers among parous women. Age at menarche, oral contraceptive use, BMI, and WHR did 

not show significant heterogeneity by intrinsic subtype with case-only ORs not significantly 

different from 1.

Age-at-incidence curves.

Bimodal frequency distributions for age at incidence have been interpreted as evidence of 

etiologic heterogeneity for basal-like vs. luminal A tumors (36). We found that luminal 

cancers were best represented by a two-component mixture model (Supplemental Table 2). 

For the basal-like group, ΔAIC lay between 4–10, still indicating that the two-component 

mixture model provided better fit, albeit with slightly lower certainty than for luminal 

cancers. For ER-/HER2+, we could not distinguish which model provided the better fit, 

with ΔAIC<4. Broadly, luminal A tumors showed a strongly bimodal pattern in age at 

diagnosis, with enrichment for both early and late onset disease. Luminal B subtype had 

a less pronounced late onset peak. ER-/HER2+ subtype was skewed toward earlier age at 

incidence, with a strong early-onset peak. Basal-like subtype was similarly enriched for 

early-onset disease, showing a small late-onset peak (Figure 1).

DISCUSSION

We estimated associations between breast cancer risk factors and tumor subtypes defined 

by six-marker IHC classification among black women in the AMBER consortium. We 

found breastfeeding to be protective for basal-like and ER-/HER2+ breast cancer in both 

case-control and case-only analyses. Parity and later age at menarche were associated with 

reduced risk of luminal A breast cancer, while increased BMI and WHR conferred increased 

risk. Luminal B subtype was not significantly associated with any risk factors other than 

family history, although the direction of association was similar for Luminal A breast 

cancers, and in case-only analyses did not exhibit a risk factor profile distinct from luminal 

A. Age-at-incidence curves overall showed bimodal distributions with pronounced early 

onset peaks for all subtypes, but ER-/HER2+ and basal-like subtypes showed earlier age at 

diagnosis compared to luminal subtypes, in keeping with their distinct risk factor profiles. 

In a large, black population with centrally-assessed, six-marker IHC-based breast cancer 

subtypes, risk factor profiles by intrinsic subtype suggest distinct risk factors for basal-like 
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breast cancer and highlight breastfeeding as a plausible intervention to reduce risk of this 

aggressive subtype of breast cancer.

Breastfeeding has consistently demonstrated a protective effect for triple negative and 

basal-like breast cancers in prior literature (38–45). In our study, we observed that women 

who were parous but did not breastfeed had the highest ORs for basal-like breast cancer, 

further reinforcing the importance of breastfeeding to reduce risk of basal-like breast cancer. 

A number of prior studies have found similar results, including earlier analyses with 

clinical markers in the AMBER consortium, which found breastfeeding to be associated 

with reduced risk for ER-negative, basal-like, and triple-negative subtypes, while parous 

women who did not breastfeed were at increased risk for these subtypes (9, 13, 39, 46). 

We also found increased WHR to be associated with increased risk of basal-like subtype, 

in agreement with earlier analyses in the AMBER consortium (16, 18). A previous study 

among participants of the Women’s Health Initiative showed no association between WHR 

and risk for triple negative breast cancer; however, this study included a small number of 

black women (n=199 cases) (47). The relationship between adiposity and breast cancer 

risk appears to vary by race and ethnicity, and WHR, commonly used to represent central 

adiposity, may more strongly influence breast cancer risk than BMI among black women 

(48). It will be important to consider obesity-related biomarkers in future studies to better 

understand how body mass distribution and race influence breast cancer etiology.

Compared to luminal and basal-like subtypes, risk factor profiles for luminal B and ER-/

HER2+ breast cancer have been less consistently reported, likely due to the lower prevalence 

of these subtypes. However, considering the magnitude of associations in prior literature, 

there appears to be an overlapping risk factor profile for luminal A and B subtypes, in 

line with our case-only ORs, which were very close to 1 (38, 40, 41, 49). As for the 

ER-/HER2+ subtype, we found several significant associations, including a protective effect 

of parity with breastfeeding. This is in contrast to a study among a multiethnic cohort 

of women which found parity (versus nulliparity) to be associated with 43% (95% CI: 

1.08–1.89) higher odds of ER-/HER2+ breast cancer relative to luminal A (46). That study 

included a larger number (n=493) of ER-/HER2+ tumors and a lower proportion (less 

than 6%) of black women relative to our study. In the Nurses Health Study, a cohort of 

largely non-Hispanic white women, Fortner et al. also found parity (versus nulliparity) to be 

associated with increased risk of ER-/HER2+ tumors (40). Our discrepant findings may be 

due to differences in tumor classification schema and/or patient population, as reproductive 

factors are known to vary by race and ethnicity (50, 51). Of note, we found an increased 

risk for ER-/HER2+ subtype with oral contraceptive use, a finding that has been previously 

reported among white and Asian women, but not among black women (52–54).

Age at incidence curves offer additional perspectives on etiologic heterogeneity among 

breast tumor subtypes. Recent evidence has suggested that breast cancer can be divided 

into two etiologic subtypes defined by age at onset, and that the difference in the relative 

distribution of those two subtypes underpins the biological characteristics of any given 

breast cancer categorization (55). We saw that, compared to the luminal subtypes, ER-/

HER2+ and basal-like subtypes exhibited strong early onset peaks, which supports the 

distinct risk factor associations found in case-only analyses. However, it is notable that 
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predominant early onset enrichment was observed among all subtypes in this study of black 

women. This is in contrast to an earlier study using data from the Molecular Taxonomy 

of Breast Cancer International Consortium (METABRIC), which enrolled mostly white 

women, and showed luminal A and luminal B subtypes to have predominant late onset 

modes (55). Our findings confirm a consistent trend toward earlier age at breast cancer 

incidence for black women compared to white women and suggest that it persists across all 

subtypes (36, 56, 57).

Strengths of this study include a large population of black women from throughout the 

United States and the use of central laboratory, 6-marker IHC classification. The sample 

size of ER-/HER2+ and basal-like breast cancers is also higher than in previous studies 

of these subtypes in diverse populations. However, despite being one of the largest 

cohorts of black women with breast cancer, we still lacked precision in measuring risk 

factor associations for the less common luminal B and ER-/HER2+ subtypes. Likewise, 

the sample size of our study did not allow sufficient power for analysis stratified by 

menopausal status. For example, examining parity and lactation or breastfeeding duration 

and stratifying by menopausal status would have resulted in fewer than 10 women in 

multiple categories. Additionally, some associations were not statistically significant in case-

control analyses, but the magnitude of these associations are important for interpretation of 

case-only analyses, which include larger sample sizes. It is also important to note that the 

modes for early and late age at incidence cannot be generalized to women in the source 

populations because some studies in the AMBER consortium oversampled for younger 

women. However, the modes were stable across intrinsic subtype, allowing for comparison 

of age-at-incidence curves by subtype.

Our findings suggest that previously identified risk factors for basal-like breast cancer 

also hold for black women. In earlier analyses, aggregation of risk factor patterns by 

race, including a trend toward earlier births and lower breastfeeding rates in black women, 

remained a concern for etiologic inference. This study shows that even among a population 

entirely composed of black women, reproductive and body size patterns were associated 

with this more aggressive breast cancer subtype. Future research to understand the 

mechanisms underlying these associations are needed. Additional approaches such as studies 

of second primary breast cancers may offer more direct evidence for etiologic heterogeneity. 

However, the current results suggest that continued promotion of breastfeeding as well as 

improved understanding of the biologic mechanisms linking adiposity and basal-like breast 

cancer risk should be part of a comprehensive strategy to address breast cancer disparities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Density plots showing age frequency distributions at diagnosis for invasive breast cancer 

cases from AMBER, overall and by 6-marker IHC-based subtype. Smoothed density curve 

is plotted in black, early-onset density is plotted in blue and late-onset density is plotted in 

green, with dotted line representing median age at diagnosis for early- and late-onset density 

curves. Bar plot shows empirical distribution of age at diagnosis. Includes 384 cases missing 

Ki67, which were classified using grade as a surrogate as described in Allott et al. 2018(29)
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Table 1:

Case-only odds ratios comparing ER-negative relative to ER-positive breast cancer. Cases are from BWHS, 

WCHS, and CBCS Phases 1, 2, and 3.

ER-Positive (n=1393) ER-Negative (n=956)

Risk Factor n (%) n (%) OR (95%CI)
a

Family history
b

No 1147 (82) 793 (83) 1.00

Yes 246 (18) 163 (17) 1.03 (0.82 – 1.29)

Age at menarche

<11 164 (12) 96 (10) 1.00

11–12 630 (45) 413 (43) 1.15 (0.86 – 1.54)

>=13 597 (43) 446 (47) 1.35 (1.01 – 1.80)

Missing 2 1

Parity

Nulliparous 242 (17) 114 (12) 1.00

1–2 children 661 (47) 492 (51) 1.87 (1.43 – 2.44)

>=3 children 490 (35) 350 (37) 2.05 (1.54 – 2.73)

Missing 0 0

Age at first full-term birth
c

<25 808 (70) 643 (76) 1.00

>=25 337 (30) 196 (23) 0.74 (0.60 – 0.92)

Missing 6 3

Lifetime breastfeeding duration
c

Never 640 (56) 538 (64) 1.00

<6 mos 205 (18) 144 (17) 0.75 (0.59 – 0.96)

6+ mos 297 (26) 154 (18) 0.61 (0.49 – 0.78)

Missing 9 6

Oral contraceptive use

Never 559 (40) 339 (35) 1.00

Ever 823 (59) 611 (64) 1.02 (0.85 – 1.23)

Missing 11 0

Body mass index

<25 228 (16) 155 (16) 1.00

25–29 367 (26) 285 (30) 1.22 (0.94 – 1.59)

>=30 782 (56) 506 (53) 1.04 (0.82 – 1.33)

Missing 16 10

Waist-to-hip ratio
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ER-Positive (n=1393) ER-Negative (n=956)

Risk Factor n (%) n (%) OR (95%CI)
a

<0.77 164 (12) 116 (12) 1.00

0.77–0.83 343 (25) 287 (30) 1.18 (0.87 – 1.59)

>=0.84 837 (60) 528 (55) 0.97 (0.73 – 1.29)

Missing 49 25

a
Model includes: age, family history, parity, breastfeeding duration, and study.

b
Family history of breast cancer in first-degree relative

c
Includes parous women only
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