30 research outputs found

    Vitamin E-analog Trolox prevents endoplasmic reticulum stress in frozen-thawed ovarian tissue of capuchin monkey (Sapajus apella)

    Get PDF
    Ovarian fragments were exposed to 0.5 M sucrose and 1 M ethylene glycol (freezing solution; FS) with or without selenium or Trolox. Histological and ultrastructural analyses showed that the percentages of normal follicles in control tissue and in tissue after exposure to FS+50 μM Trolox were similar. Trolox prevented endoplasmic reticulum (ER)-related vacuolization, which is commonly observed in oocytes and stromal tissue after exposure to FS. From the evaluated stress markers, superoxide dismutase 1 (SOD1) was up-regulated in ovarian tissue exposed to FS+10 ng/ml selenium. Ovarian fragments were subsequently frozenthawed in the presence of FS with or without 50 μM Trolox, followed by in vitro culture (IVC). Antioxidant capacity in ovarian fragments decreased after freeze-thawing in Troloxfree FS compared with FS+50 μMTrolox. Although freezing itself minimized the percentage of viable follicles in each solution, Trolox supplementation resulted in higher rates of viable follicles (67 %), even after IVC (61 %). Furthermore, stress markers SOD1 and ERp29 were up-regulated in ovarian tissue frozen-thawed in Trolox-free medium. Relative mRNA expression of growth factors markers was evaluated after freeze-thawing followed by IVC. BMP4, BMP5, CTGF, GDF9 and KL were down-regulated independently of the presence of Trolox in FS but down-regulation was less pronounced in the presence of Trolox. Thus, medium supplementation with 50 μMTrolox prevents ER stress and, consequently, protects ovarian tissue from ER-derived cytoplasmic vacuolization. ERp29 but not ERp60, appears to be a key marker linking stress caused by freezing-thawing and cell vacuolization.http://link.springer.com/journal/441hb201

    Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

    Get PDF
    Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process

    Chemotherapy-induced hair loss

    No full text

    Chemotherapy-induced hair loss

    No full text
    corecore