15 research outputs found

    WEIGHT TRANSFER IN DIFFERENT GOLF SWING STYLES BASED ON SWING PLANE: A NONLINEAR DYNAMICS APPROACH

    Get PDF
    INTRODUCTION: Weight transfer has been considered as one of the most important aspects of golf swing in golf coaching theories. Previous studies present conflicting and restricted findings on weight transfer. The purpose of this study was to determine if swing style influences weight transfer pattern by analyzing select center-of-pressure parameters using the approximate entropy method

    Effect of Remote Sensory Noise on Hand Function Post Stroke

    Get PDF
    Hand motor impairment persists after stroke. Sensory inputs may facilitate recovery of motor function. This pilot study tested the effectiveness of tactile sensory noise in improving hand motor function in chronic stroke survivors with tactile sensory deficits, using a repeated measures design. Sensory noise in the form of subthreshold, white noise, mechanical vibration was applied to the wrist skin during motor tasks. Hand dexterity assessed by the Nine Hole Peg Test and the Box and Block Test and pinch strength significantly improved when the sensory noise was turned on compared with when it was turned off in chronic stroke survivors. The subthreshold sensory noise to the wrist appears to induce improvements in hand motor function possibly via neuronal connections in the sensoriomotor cortex. The approach of applying concomitant, unperceivable mechanical vibration to the wrist during hand motor tasks is easily adoptable for clinic use as well as unsupervised home use. This pilot study suggests a potential for a wristband-type assistive device to complement hand rehabilitation for stroke survivors with sensorimotor deficit

    Shared and Task-Specific Muscle Synergies during Normal Walking and Slipping

    Get PDF
    Falling accidents are costly due to their prevalence in the workplace. Slipping has been known to be the main cause of falling. Understanding the motor response used to regain balance after slipping is crucial to developing intervention strategies for effective recovery. Interestingly, studies on spinalized animals and studies on animals subjected to electrical microstimulation have provided major evidence that the Central Nervous System (CNS) uses motor primitives, such as muscle synergies, to control motor tasks. Muscle synergies are thought to be a critical mechanism used by the CNS to control complex motor tasks by reducing the dimensional complexity of the system. Even though synergies have demonstrated potential for indicating how the body responds to balance perturbations by accounting for majority of the data set's variability, this concept has not been applied to slipping. To address this gap, data from 11 healthy young adults were collected and analyzed during both unperturbed walking and slipping. Applying an iterative non-negative matrix decomposition technique, four muscle synergies and the corresponding time-series activation coefficients were extracted. The synergies and the activation coefficients were then compared between baseline walking and slipping to determine shared vs. task-specific synergies. Correlation analyses found that among four synergies, two synergies were shared between normal walking and slipping. However, the other two synergies were task-specific. Both limbs were contributing to each of the four synergies, suggesting substantial inter-limb coordination during gait and slip. These findings stay consistent with previous unilateral studies that reported similar synergies between unperturbed and perturbed walking. Activation coefficients corresponding to the two shared synergies were similar between normal walking and slipping for the first 200 ms after heel contact and differed later in stance, suggesting the activation of muscle synergies in response to a slip. A muscle synergy approach would reveal the used sub-tasks during slipping, facilitating identification of impaired sub-tasks, and potentially leading to a purposeful rehabilitation based on damaged sub-functions

    Effect of Protective Clothing and Fatigue on Functional Balance of Firefighters

    Get PDF
    We investigated the effects of wearing personal protective equipment (PPE), design of PPE (Standard vs.Enhanced), and fatigue during a simulated firefighting activity on the functional balance of firefighters. We defined functional balance as the ability to prevent a loss of balance and maintain body posture while performing functional tasks. A novel Functional Balance Test (FBT) was used to assess functional balance of firefighters while stepping up, stepping down, turning, walking along a beam, and passing under an obstacle. Data are presented from fifty-seven male firefighters, who were randomly divided into two groups: Standard PPE (n=28) and Enhanced PPE (n=29). The specially designed Enhanced PPE was lighter, more breathable, and capable of air circulation, compared to traditional Standard PPE. Each participant performed the FBT at three time periods (baseline with station uniform, pre-activity with PPE, and post-activity with PPE after a live-fire simulated firefighting activity). The firefighting activity involved alternating 2-minute rest- work cycles of four stations: stair climb, forcible entry, room search, and hose advancement. The FBT had four trials each with and without an overhead obstacle. Performance errors (major and minor), performance time, and a composite performance index were recorded. Wearing PPE significantly impaired functional balance, as noted by increases in all performance metrics. Following the firefighting activity, performance time increased by 3% but the number of minor and major errors decreased by 13% and 32%, respectively, suggesting that firefighters may trade-off between speed and accuracy depending on perceived threat to balance safety. There was no significant difference in functional balance between the Enhanced PPE and Standard PPE groups, suggesting that Enhanced PPE with a passive cooling system and an external circulating hose is not effective in improving functional balance of firefighters. A better designed PPE, with an improved cooling system and minimal (or no) protruding attachments may be of benefit in terms of firefighter functional balance.Ope

    Quantification of the human postural control system to perturbations

    Get PDF
    Human standing posture is inherently unstable. The postural control system (PCS), which maintains standing posture, is composed of the sensory, musculoskeletal, and central nervous systems. Together these systems integrate sensory afferents and generate appropriate motor efferents to adjust posture. The PCS maintains the body center of mass (COM) with respect to the base of support while constantly resisting destabilizing forces from internal and external perturbations. To assess the human PCS, postural sway during quiet standing or in response to external perturbation have frequently been examined descriptively. Minimal work has been done to understand and quantify the robustness of the PCS to perturbations. Further, there have been some previous attempts to assess the dynamical systems aspects of the PCS or time evolutionary properties of postural sway. However those techniques can only provide summary information about the PCS characteristics; they cannot provide specific information about or recreate the actual sway behavior. This dissertation consists of two parts: part I, the development of two novel methods to assess the human PCS and, part II, the application of these methods. In study 1, a systematic method for analyzing the human PCS during perturbed stance was developed. A mild impulsive perturbation that subjects can easily experience in their daily lives was used. A measure of robustness of the PCS, 1/MaxSens that was based on the inverse of the sensitivity of the system, was introduced. 1/MaxSens successfully quantified the reduced robustness to external perturbations due to age-related degradation of the PCS. In study 2, a stochastic model was used to better understand the human PCS in terms of dynamical systems aspect. This methodology also has the advantage over previous methods in that the sway behavior is captured in a model that can be used to recreate the random oscillatory properties of the PCS. The invariant density which describes the long-term stationary behavior of the center of pressure (COP) was computed from a Markov chain model that was applied to postural sway data during quiet stance. In order to validate the Invariant Density Analysis (IDA), we applied the technique to COP data from different age groups. We found that older adults swayed farther from the centroid and in more stochastic and random manner than young adults. In part II, the tools developed in part I were applied to both occupational and clinical situations. In study 3, 1/MaxSens and IDA were applied to a population of firefighters to investigate the effects of air bottle configuration (weight and size) and vision on the postural stability of firefighters. We found that both air bottle weight and loss of vision, but not size of air bottle, significantly decreased balance performance and increased fall risk. In study 4, IDA was applied to data collected on 444 community-dwelling elderly adults from the MOBILIZE Boston Study. Four out of five IDA parameters were able to successfully differentiate recurrent fallers from non-fallers, while only five out of 30 more common descriptive and stochastic COP measures could distinguish the two groups. Fall history and the IDA parameter of entropy were found to be significant risk factors for falls. This research proposed a new measure for the PCS robustness (1/MaxSens) and a new technique for quantifying the dynamical systems aspect of the PCS (IDA). These new PCS analysis techniques provide easy and effective ways to assess the PCS in occupational and clinical environments

    Angular momentum regulation may dictate the slip severity in young adults.

    No full text
    Falls cause negative impacts on society and the economy. Slipping is a common initiating event for falling. Yet, individuals differ in their ability to recover from slips. Persons experiencing mild slips can accommodate the perturbation without falling, whereas severe slipping is associated with inadequate or slow pre- or post-slip control that make these individuals more prone to fall. Knowing the discrepancies between mild and severe slippers in kinematic and kinetic variables improves understanding of adverse control responsible for severe slipping. This study examined differences across these participants with respect to center of mass (COM) height, sagittal angular momentum (H), upper body kinematics, and the duration of single/double phase. Possible causality of such relationships was also studied by observing the time-lead of the deviations. Twenty healthy young adults performed walking trials in dry and slippery conditions. They were classified into mild and severe slippers based on their heel slipping speed. No inter-group differences were observed in the upper extremity kinematics. It was found that mild and severe slippers do not differ in the studied variables during normal gait; however, they do show significant differences through slipping. Compared to mild slippers, sever slippers lowered their COM height following a slip, presented higher H, and shortened their single support phase (p-value<0.05 for all). Based on the time-lead observed in H over all other variables suggests that failure to control angular momentum may influence slip severity

    Synergistic Effects on the Elderly People's Motor Control by Wearable Skin-Stretch Device Combined with Haptic Joystick

    No full text
    Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. Meanwhile, recent studies have shown the feasibility of improving a motor task performance by providing skin-stretch feedback. Therefore, a combination of two aforementioned feedback types is deemed to be promising to promote synergistic effects to consistently improve the person's motor performance. In this study, we aimed at identifying the effect of the combined haptic and skin-stretch feedbacks on the aged person's driving motor performance. For the experiment, 15 healthy elderly subjects (age 72.8 ± 6.6 years) were recruited and were instructed to drive a virtual power-wheelchair through four different courses with obstacles. Four augmented sensory feedback conditions were tested: no feedback, force feedback, skin-stretch feedback, and a combination of both force and skin-stretch feedbacks. While the haptic force was provided to the hand by the joystick, the skin-stretch was provided to the steering forearm by a custom-designed wearable skin-stretch device. We tested two hypotheses: (i) an elderly individual's motor control would benefit from receiving information about a desired trajectory from multiple sensory feedback sources, and (ii) the benefit does not depend on task difficulty. Various metrics related to skills and safety were used to evaluate the control performance. Repeated measure ANOVA was performed for those metrics with two factors: task scenario and the type of the augmented sensory feedback. The results revealed that elderly subjects' control performance significantly improved when the combined feedback of both haptic force and skin-stretch feedback was applied. The proposed approach suggest the feasibility to improve people's task performance by the synergistic effects of multiple augmented sensory feedback modalities
    corecore