4,152 research outputs found

    Biomarkers in emergency medicine

    Get PDF
    Researchers navigate the ocean of biomarkers searching for proper targets and optimal utilization of them. Emergency medicine builds up the front line to maximize the utility of clinically validated biomarkers and is the cutting edge field to test the applicability of promising biomarkers emerging from thorough translational researches. The role of biomarkers in clinical decision making would be of greater significance for identification, risk stratification, monitoring, and prognostication of the patients in the critical- and acute-care settings. No doubt basic research to explore novel biomarkers in relation to the pathogenesis is as important as its clinical counterpart. This special issue includes five selected research papers that cover a variety of biomarker- and disease-related topics

    Nonfrustrated magnetoelectric with incommensurate magnetic order in magnetic field

    Full text link
    We discuss a model nonfrustrated magnetoelectric in which strong enough magnetoelectric coupling produces incommensurate magnetic order leading to ferroelectricity. Properties of the magnetoelectric in magnetic field directed perpendicular to wave vector describing the spin helix are considered in detail. Analysis of classical energy shows that in contrast to naive expectation the onset of ferroelectricity takes place at a field Hc1H_{c1} that is lower than the saturation field Hc2H_{c2}. One has Hc1=Hc2H_{c1}=H_{c2} at strong enough magnetoelectric coupling. We show that at H=0 the ferroelectricity appears at T=TFE<TNT=T_{FE}<T_N. Qualitative discussion of phase diagram in HTH-T plane is presented within mean field approach.Comment: 12 pages, 3 figures, accepted in JET

    Circulating Biologically Active Adrenomedullin Predicts Organ Failure and Mortality in Sepsis

    Get PDF
    BACKGROUND: Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Biologically active adrenomedullin (bio-ADM) is an emerging biomarker for sepsis. We explored whether bio-ADM concentration could predict severity, organ failure, and 30-day mortality in septic patients. METHODS: In 215 septic patients (109 patients with sepsis; 106 patients with septic shock), bio-ADM concentration was measured at diagnosis of sepsis, using sphingotest bio-ADM (Sphingotec GmbH, Hennigsdorf, Germany) and analyzed in terms of sepsis severity, vasopressor use, and 30-day mortality. The number of organ failures, sequential (sepsis-related) organ failure assessment (SOFA) score, and 30-day mortality were compared according to bio-ADM quartiles. RESULTS: Bio-ADM concentration was significantly higher in patients with septic shock, vasopressor use, and non-survivors than in patients with solitary sepsis, no vasopressor use, and survivors, respectively (all P&lt;0.0001). Bio-ADM quartiles were associated with the number of organ failures (P&lt;0.0001), as well as SOFA cardiovascular, renal, coagulation, and liver subscores (all P&lt;0.05). The 30-day mortality rate showed a stepwise increase in each bio-ADM quartile (all P&lt;0.0001). Bio-ADM concentration and SOFA score equally predicted the 30-day mortality (area under the curve: 0.827 vs 0.830). CONCLUSIONS: Bio-ADM could serve as a useful and objective biomarker to predict severity, organ failure, and 30-day mortality in septic patients

    Time-reversal symmetry breaking in circuit-QED based photon lattices

    Full text link
    Breaking time-reversal symmetry is a prerequisite for accessing certain interesting many-body states such as fractional quantum Hall states. For polaritons, charge neutrality prevents magnetic fields from providing a direct symmetry breaking mechanism and similar to the situation in ultracold atomic gases, an effective magnetic field has to be synthesized. We show that in the circuit QED architecture, this can be achieved by inserting simple superconducting circuits into the resonator junctions. In the presence of such coupling elements, constant parallel magnetic and electric fields suffice to break time-reversal symmetry. We support these theoretical predictions with numerical simulations for realistic sample parameters, specify general conditions under which time-reversal is broken, and discuss the application to chiral Fock state transfer, an on-chip circulator, and tunable band structure for the Kagome lattice.Comment: minor revisions, version published in PRA; 19 pages, 13 figures, 2 table

    Envelope-kinetic analysis of the electron kinetic effects on Raman backscatter and Raman backward laser amplification

    Get PDF
    The electron kinetic effects on Raman backscattering and Raman backward laser amplification were analyzed. The analysis is based on the envelope-kinetic equations of a plasma wave, which are composed of the conventional envelope equation of a fluid plasma and the kinetic term. One major goal of this paper is to close the envelope-kinetic model by analyzing the kinetic term, which was not fully covered in the previous work [M. S. Hur et al., Phys. Rev. Lett. 95, 115003 (2005)]. It was found that the closed envelope-kinetic equation in the nontrapping regime takes the same form as the envelope equation of the fluid plasma used in the three-wave model. For the closure in the trapping-dominant regime, the test particle technique is employed to calculate the kinetic term. Results from the full kinetic and test particle simulations agree well with each other, while the latter has a great advantage in computation speed. The frequency shift and resonance breaking by the trapped particles are discussed with the help of a new diagnostic inserted in the full kinetic averaged particle-in-cell code.open5

    Effects of the frequency detuning in Raman backscattering of infinitely long laser pulses in plasmas

    Get PDF
    Raman backscattering (RBS) in an infinite homogeneous laser-plasma system was investigated with the three-wave fluid model and averaged particle-in-cell (aPIC) simulations in the nonrelativistic and low temperature regime. It was found that the periodic boundary condition for the electrostatic potential, which is commonly used in an infinite homogeneous plasma, induces a numerical frequency shift of the plasma wave. The initial frequency detuning between the three waves is modified by the frequency shift, leading to a significantly wrong result in the RBS system. An alternative boundary condition based on the Maxwell equation is presented. The aPIC simulations with the modified boundary condition show that the pump depletion level depends sensitively on the frequency mismatch between the three waves. This sensitivity is closely related with the erroneous RBS: the numerical frequency shift is very minor (a few percent of the plasma frequency or less than that) but RBS can be greatly affected even by such a small frequency change. Analytic formulas for the pump depletion time and level is derived and compared to the aPIC simulations with the modified boundary condition, showing an excellent agreement.open2

    Simulation of electromagnetically and magnetically induced transparency in a magnetized plasma

    Get PDF
    Electromagnetically induced transparency (EIT), a phenomenon well known in atomic systems, has a natural analogy in a classical magnetized plasma. The magnetized plasma has a resonance for right-hand polarized electromagnetic waves at the electron cyclotron frequency Omega(0), so that a probe wave with frequency omega(1) = Omega(0) cannot propagate through the plasma. The plasma can be made transparent to such a probe by the presence of a pump wave. The pump may be an electromagnetic wave or magnetostatic wiggler. Simulations and theory show that the physical reason for the transparency is that the beating of the probe wave with the pump wave sets up a plasma oscillation, and the upper sideband of the pump wave cancels the resonant plasma current due to the probe. The theory of plasma EIT derived here extends that found in the earlier work to include the effects of the lower sideband of the pump and renormalization of the plasma frequency and an analysis of the transient response. A detailed comparison of theory to one-dimensional particle-in-cell simulations is presented and estimates for the performance ion accelerator using the EIT interaction are given. The dispersion relation and estimates for the phase velocity and amplitude of the plasma wave are in good agreement with particle-in-cell simulations.open151

    Plasma density measurements using chirped pulse broad-band Raman amplification

    Get PDF
    Stimulated Raman backscattering is used as a non-destructive method to determine the density of plasma media at localized positions in space and time. By colliding two counter-propagating, ultra-short laser pulses with a spectral bandwidth larger than twice the plasma frequency, amplification occurs at the Stokes wavelengths, which results in regions of gain and loss separated by twice the plasma frequency, from which the plasma density can be deduced. By varying the relative delay between the laser pulses, and therefore the position and timing of the interaction, the spatio-temporal distribution of the plasma density can be mapped out

    Acute alcohol administration dampens central extended amygdala reactivity.

    Get PDF
    Alcohol use is common, imposes a staggering burden on public health, and often resists treatment. The central extended amygdala (EAc)-including the bed nucleus of the stria terminalis (BST) and the central nucleus of the amygdala (Ce)-plays a key role in prominent neuroscientific models of alcohol drinking, but the relevance of these regions to acute alcohol consumption in humans remains poorly understood. Using a single-blind, randomized-groups design, multiband fMRI data were acquired from 49 social drinkers while they performed a well-established emotional faces paradigm after consuming either alcohol or placebo. Relative to placebo, alcohol significantly dampened reactivity to emotional faces in the BST. To rigorously assess potential regional differences in activation, data were extracted from unbiased, anatomically predefined regions of interest. Analyses revealed similar levels of dampening in the BST and Ce. In short, alcohol transiently reduces reactivity to emotional faces and it does so similarly across the two major divisions of the human EAc. These observations reinforce the translational relevance of addiction models derived from preclinical work in rodents and provide new insights into the neural systems most relevant to the consumption of alcohol and to the initial development of alcohol abuse in humans
    corecore