531 research outputs found

    Dissipative effects from transport and viscous hydrodynamics

    Full text link
    We compare 2->2 covariant transport theory and causal Israel-Stewart hydrodynamics in 2+1D longitudinally boost invariant geometry with RHIC-like initial conditions and a conformal e = 3p equation of state. The pressure evolution in the center of the collision zone and the final differential elliptic flow v2(pT) from the two theories agree remarkably well for a small shear viscosity to entropy density ratio eta/s ~ 1/(4 pi), and also for a large cross section sigma ~ 50 mb. A key to this agreement is keeping ALL terms in the Israel-Stewart equations of motion. Our results indicate promising prospects for the applicability of Israel-Stewart dissipative hydrodynamics at RHIC, provided the shear viscosity of hot and dense quark-gluon matter is indeed very small for the relevant temperatures T ~ 200-500 MeV.Comment: Presentation at Quark Matter 2008. 4 pages, 3 figure

    The applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    Full text link
    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart dissipative hydrodynamics (IS) and Navier-Stokes theory (NS) for relativistic heavy ion physics applications. A massless ideal gas with 2->2 interactions is considered in a 0+1D Bjorken scenario, appropriate for the early longitudinal expansion stage of the collision. In the scale invariant case of a constant shear viscosity to entropy density ratio eta/s ~ const, we find that Israel-Stewart theory is 10% accurate in calculating dissipative effects if initially the expansion timescale exceeds half the transport mean free path tau0/lambda0 > ~2. The same accuracy with Navier-Stokes requires three times larger tau0/lambda0 > ~6. For dynamics driven by a constant cross section, on the other hand, about 50% larger tau0/lambda0 > ~3 (IS) and ~9 (NS) are needed. For typical applications at RHIC energies s_{NN}**(1/2) ~ 100-200 GeV, these limits imply that even the Israel-Stewart approach becomes marginal when eta/s > ~0.15. In addition, we find that the 'naive' approximation to Israel-Stewart theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic Israel-Stewart and Navier-Stokes solutions in 0+1D, and present further tests for numerical dissipative hydrodynamics codes in 1+1, 2+1, and 3+1D based on generalized conservation laws.Comment: 30 pages, 26 EPS figures, revtex stylefil

    Results from the Relativistic Heavy Ion Collider

    Full text link
    We describe the current status of the heavy ion research program at the Relativistic Heavy Ion Collider (RHIC). The new suite of experiments and the collider energies have opened up new probes of the medium created in the collisions. Our review focuses on the experimental discoveries to date at RHIC and their interpretation in the light of our present theoretical understanding of the dynamics of relativistic heavy ion collisions and of the structure of strongly interacting matter at high energy density.Comment: 47 pages, 10 figures, submitted to Annual Review of Nuclear and Particle Science. The authors invite and appreciate feedback about possible errors and/or inconsistencies in the manuscrip

    A Co-moving Coordinate System for Relativistic Hydrodynamics

    Get PDF
    The equations of relativistic hydrodynamics are transformed so that steps forward in time preserves local simultaneity. In these variables, the space-time coordinates of neighboring points on the mesh are simultaneous according to co-moving observers. Aside from the time step varying as a function of the location on the mesh, the local velocity gradient and the local density then evolve according to non-relativistic equations of motion. Analytic solutions are found for two one-dimensional cases with constant speed of sound. One solution has a Gaussian density profile when mapped into the new coordinates. That solution is analyzed for the effects of longitudinal acceleration in relativistic heavy ion collisions at RHIC, especially in regards to two-particle correlation measurements of the longitudinal size

    Chemical freeze-out temperature in hydrodynamical description of Au+Au collisions at sqrt(s_NN) = 200 GeV

    Full text link
    We study the effect of separate chemical and kinetic freeze-outs to the ideal hydrodynamical flow in Au+Au collisions at RHIC (sqrt(s_NN) = 200 GeV energy). Unlike in earlier studies we explore how these effects can be counteracted by changes in the initial state of the hydrodynamical evolution. We conclude that the reproduction of pion, proton and antiproton yields necessitates a chemical freeze-out temperature of T = 150 MeV instead of T = 160 - 170 MeV motivated by thermal models. Unlike previously reported, this lower temperature makes it possible to reproduce the p_T-spectra of hadrons if one assumes very small initial time, tau_0 = 0.2 fm/c. However, the p_T-differential elliptic flow, v_2(p_T) remains badly reproduced. This points to the need to include dissipative effects (viscosity) or some other refinement to the model.Comment: 8 pages, 7 figures; Accepted for publication in European Physical Journal A; Added discussion about the effect of weak decays to chemical freeze-out temperature and a figure showing isentropic curves in T-mu plan

    Transverse hydrodynamics with sudden hadronization -- production of strangeness

    Full text link
    We consider a physical scenario for ultra-relativistic heavy-ion collisions where, at the early stage, only transverse degrees of freedom of partons are thermalized, while the longitudinal motion is described by free streaming. When the energy density of the partonic system drops to a certain critical value, the partons hadronize and the newly formed hadronic system freezes out. This sudden change is described with the help of the Landau matching conditions followed by the simulations done with THERMINATOR. The proposed scenario reproduces well the transverse-momentum spectra, the elliptic flow coefficient v2, and the HBT radii of pions and kaons studied at RHIC (Au+Au collisions at the top beam energy). It also reproduces quite well the transverse-momentum spectra of hyperons.Comment: talk presented by WF at the Strangeness in Quark Matter Conference, Buzios, Brazil, Sept. 27 - oct. 2, 200

    v4: A small, but sensitive observable for heavy ion collisions

    Full text link
    Higher order Fourier coefficients of the azimuthally dependent single particle spectra resulting from noncentral heavy ion collisions are investigated. For intermediate to large transverse momenta, these anisotropies are expected to become as large as 5 %, and should be clearly measurable. The physics content of these observables is discussed from two different extreme but complementary viewpoints, hydrodynamics and the geometric limit with extreme energy loss.Comment: as published: typos corrected, Fig. 3 slightly improved in numerics and presentatio

    Measurements of Heavy Flavor and Di-electron Production at STAR

    Full text link
    Heavy quarks are produced early in the relativistic heavy ion collisions, and provide an excellent probe into the hot and dense nuclear matter created at RHIC. In these proceedings, we will discuss recent STAR measurements of heavy flavor production, to investigate the heavy quark interaction with the medium. Electromagnetic probes, such as electrons, provide information on the various stages of the medium evolution without modification by final stage interactions. Di-electron production measurements by STAR will also be discussed.Comment: 5 pages, 6 figures, proceedings for CPOD201

    Elliptic flow of thermal photons and dileptons

    Full text link
    In this talk we describe the recently discovered rich phenomenology of elliptic flow of electromagnetic probes of the hot matter created in relativistic heavy-ion collisions. Using a hydrodynamic model for the space-time dynamics of the collision fireball created in Au+Au collisions at RHIC, we compute the transverse momentum spectra and elliptic flow of thermal photons and dileptons. These observables are shown to provide differential windows into various stages of the fireball expansion.Comment: 8 pages, including 9 figures. Invited talk at the Hard Probes 2006 Conference (Asilomar, June 9-16, 2006), to appear in the Proceedings (Elsevier

    Space-time evolution of bulk QCD matter

    Get PDF
    We introduce a combined fully three-dimensional macroscopic/microscopic transport approach employing relativistic 3D-hydrodynamics for the early, dense, deconfined stage of the reaction and a microscopic non-equilibrium model for the later hadronic stage where the equilibrium assumptions are not valid anymore. Within this approach we study the dynamics of hot, bulk QCD matter, which is being created in ultra-relativistic heavy ion collisions at RHIC. Our approach is capable of self-consistently calculating the freezeout of the hadronic system, while accounting for the collective flow on the hadronization hypersurface generated by the QGP expansion. In particular, we perform a detailed analysis of the reaction dynamics, hadronic freezeout, and transverse flow.Comment: 24 pages, 27 figure
    • …
    corecore