487 research outputs found

    The "Ridge" in Proton-Proton Scattering at 7 TeV

    Full text link
    One of the most important experimental results for proton-proton scattering at the LHC is the observation of a so-called "ridge" structure in the two particle correlation function versus the pseudorapidity difference Δη\Delta\eta and the azimuthal angle difference Δϕ\Delta\phi. One finds a strong correlation around Δϕ=0\Delta\phi=0, extended over many units in Δη\Delta\eta. We show that a hydrodynamical expansion based on flux tube initial conditions leads in a natural way to the observed structure. To get this result, we have to perform an event-by-event calculation, because the effect is due to statistical fluctuations of the initial conditions, together with a subsequent collective expansion. This is a strong point in favour of a fluid-like behavior even in pppp scattering, where we have to deal with length scales of the order of 0.1 fm.Comment: 5 pages, 4 figure

    Hydrodynamic Models for Heavy Ion Collisions

    Get PDF
    Application of hydrodynamics for modeling of heavy-ion collisions is reviewed. We consider several physical observables that can be calculated in this approach and compare them to the experimental measurements.Comment: 42 pages, 15 figures, An invited review for Nov. 2006 edition of Annual Review of Nuclear and Particle Physic

    Formation Time of QGP from Thermal Photon Elliptic Flow

    Full text link
    We show that the transverse momentum dependent elliptic flow v2(pT)v_2(p_T) of thermal photons is quite sensitive to the initial formation time (τ0\tau_0) of Quark Gluon Plasma (QGP) for semi-central collision of gold nuclei at RHIC \cite{tau}. A smaller value of the formation time or a larger initial temperature leads to a significant increase in the thermal photon radiation from QGP phase, which has a smaller v2v_2. The elliptic flow of thermal photon is dominated by the contribution from the quark matter at intermediate and high pTp_T range and as a result sum v2v_2 decreases with smaller τ0\tau_0 for pT1.5p_T \ge 1.5 GeV. On the other hand we find that the elliptic flow parameter for hadrons depends only marginally on the value of τ0\tau_0.Comment: 4 pages, 3 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee, v2: minor correction

    Dynamical freeze-out condition in ultrarelativistic heavy ion collisions

    Full text link
    We determine the decoupling surfaces for the hydrodynamic description of heavy ion collisions at RHIC and LHC by comparing the local hydrodynamic expansion rate with the microscopic pion-pion scattering rate. The pion pTp_T spectra for nuclear collisions at RHIC and LHC are computed by applying the Cooper-Frye procedure on the dynamical-decoupling surfaces, and compared with those obtained from the constant-temperature freeze-out surfaces. Comparison with RHIC data shows that the system indeed decouples when the expansion rate becomes comparable with the pion scattering rate. The dynamical decoupling based on the rates comparison also suggests that the effective decoupling temperature in central heavy ion collisions remains practically unchanged from RHIC to LHC.Comment: 7 pages, 9 figure

    Elliptic flow in nuclear collisions at the Large Hadron Collider

    Full text link
    We use perfect-fluid hydrodynamical model to predict the elliptic flow coefficients in Pb + Pb collisions at the Large Hadron Collider (LHC). The initial state for the hydrodynamical calculation for central A+AA + A collisions is obtained from the perturbative QCD + saturation (EKRT) model. The centrality dependence of the initial state is modeled by the optical Glauber model. We show that the baseline results obtained from the framework are in good agreement with the data from the Relativistic Heavy Ion Collider (RHIC), and show predictions for the pTp_T spectra and elliptic flow of pions in Pb + Pb collisions at the LHC. Also mass and multiplicity effects are discussed.Comment: 11 pages, 10 figure

    v4: A small, but sensitive observable for heavy ion collisions

    Full text link
    Higher order Fourier coefficients of the azimuthally dependent single particle spectra resulting from noncentral heavy ion collisions are investigated. For intermediate to large transverse momenta, these anisotropies are expected to become as large as 5 %, and should be clearly measurable. The physics content of these observables is discussed from two different extreme but complementary viewpoints, hydrodynamics and the geometric limit with extreme energy loss.Comment: as published: typos corrected, Fig. 3 slightly improved in numerics and presentatio

    Rapid hydrodynamic expansion in relativistic heavy-ion collisions

    Full text link
    Hydrodynamic expansion of the hot fireball created in relativistic Au-Au collisions at 200GeV in 3+1-dimensions is studied. We obtain a simultaneous, satisfactory description of the transverse momentum spectra, elliptic flow and pion correlation radii for different collision centralities and different rapidities. Early initial time of the evolution is required to reproduce the interferometry data, which provides a strong indication of the early onset of collectivity. We can also constraint the shape of the initial energy density in the beam direction, with a relatively high initial energy density at the center of the fireball.Comment: 10 pages, 13 fig

    The effect of ethanol and nicotine on ER stress in human placental villous explants

    Get PDF
    Pregnant mothers continue smoking and drinking during pregnancy. To clarify the mechanisms of nicotine and ethanol toxicity during development, we have examined their effects on endoplasmic reticulum (ER) stress in human first trimester and term placental explants. First trimester and term human placental explants were treated with ethanol (2 ‰) or nicotine (15 µM), or their combination. The ER stress markers glucose regulated protein 78 (GRP78/BiP) and inositol requiring enzyme 1 α (IRE1α) were analyzed by immunoblotting. A statistically significant increase (p < 0.05) of GRP78/BiP by nicotine was noted in first trimester placental explants at 48 h, and in term placental explants at 24 h. Ethanol did not change protein expression of GRP78/BiP in either first trimester or term placental explants. IRE1α increased, although not statistically significantly, by all treatments in both first trimester and term placental explants. Thus, regardless of the known structural and functional differences in early and late placenta, both responded very similarly to the toxic compounds studied. These data support our earlier results in BeWo cells (Repo et al., 2014) implicating that nicotine induces ER stress in human placenta and may interfere with placental functions potentially disrupting fetal growth and development

    Size fluctuations of the initial source and the event-by-event transverse momentum fluctuations in relativistic heavy-ion collisions

    Full text link
    We show that the event-by-event fluctuations of the transverse size of the initial source, which follow directly from the Glauber treatment of the earliest stage of relativistic heavy-ion collisions, cause, after hydrodynamic evolution, fluctuations of the transverse flow velocity at hadronic freeze-out. This in turn leads to event-by-event fluctuations of the average transverse momentum, p_T. Simulations with GLISSANDO for the Glauber phase, followed by a realistic hydrodynamic evolution and statistical hadronization carried out with THERMINATOR, lead to agreement with the RHIC data. In particular, the magnitude of the effect, its centrality dependence, and the weak dependence on the incident energy are properly reproduced. Our results show that bulk of the observed event-by-event p_T fluctuations may be explained by the fluctuations of the size of the initial source.Comment: 5 pages, 4 figures, version accepted in PR

    Chemical freeze-out temperature in hydrodynamical description of Au+Au collisions at sqrt(s_NN) = 200 GeV

    Full text link
    We study the effect of separate chemical and kinetic freeze-outs to the ideal hydrodynamical flow in Au+Au collisions at RHIC (sqrt(s_NN) = 200 GeV energy). Unlike in earlier studies we explore how these effects can be counteracted by changes in the initial state of the hydrodynamical evolution. We conclude that the reproduction of pion, proton and antiproton yields necessitates a chemical freeze-out temperature of T = 150 MeV instead of T = 160 - 170 MeV motivated by thermal models. Unlike previously reported, this lower temperature makes it possible to reproduce the p_T-spectra of hadrons if one assumes very small initial time, tau_0 = 0.2 fm/c. However, the p_T-differential elliptic flow, v_2(p_T) remains badly reproduced. This points to the need to include dissipative effects (viscosity) or some other refinement to the model.Comment: 8 pages, 7 figures; Accepted for publication in European Physical Journal A; Added discussion about the effect of weak decays to chemical freeze-out temperature and a figure showing isentropic curves in T-mu plan
    corecore