15 research outputs found

    Designed peptides that assemble into cross-alpha amyloid-like structures

    No full text
    Amyloids adopt `cross-beta' structures composed of long, twisted fibrils with beta-strands running perpendicular to the fibril axis. Recently, a toxic peptide was proposed to form amyloid-like cross-alpha structures in solution, with a planar bilayer-like assembly observed in the crystal structure. Here we crystallographically characterize designed peptides that assemble into spiraling cross-alpha amyloid-like structures, which resemble twisted beta-amyloid fibrils. The peptides form helical dimers, stabilized by packing of small and apolar residues, and the dimers further assemble into cross-alpha amyloid-like fibrils with superhelical pitches ranging from 170 angstrom to 200 angstrom. When a small residue that appeared critical for packing was converted to leucine, it resulted in structural rearrangement to a helical polymer. Fluorescently tagged versions of the designed peptides form puncta in mammalian cells, which recover from photobleaching with markedly different kinetics. These structural folds could be potentially useful for directing in vivo protein assemblies with predetermined spacing and stabilities

    Constructing ion channels from water-soluble α-helical barrels

    Get PDF
    The design of peptides that assemble in membranes to form functional ion channels is challenging. Specifically, hydrophobic interactions must be designed between the peptides and at the peptide–lipid interfaces simultaneously. Here, we take a multi-step approach towards this problem. First, we use rational de novo design to generate water-soluble α-helical barrels with polar interiors, and confirm their structures using high-resolution X-ray crystallography. These α-helical barrels have water-filled lumens like those of transmembrane channels. Next, we modify the sequences to facilitate their insertion into lipid bilayers. Single-channel electrical recordings and fluorescent imaging of the peptides in membranes show monodisperse, cation-selective channels of unitary conductance. Surprisingly, however, an X-ray structure solved from the lipidic cubic phase for one peptide reveals an alternative state with tightly packed helices and a constricted channel. To reconcile these observations, we perform computational analyses to compare the properties of possible different states of the peptide
    corecore