16 research outputs found

    PAP3 Regulates Stamen but Not Petal Development in Capsicum annuum L.

    Get PDF
    AbstractPepper flowers are hermaphroditic; the plant's male sterility trait is characterized by its inability to produce pollen grains. In the ABC model of flower development, B-function genes play roles in petal and stamen development in the angiosperm. In this study, a B-class gene designated as PAP3 (GenBank accession no. HM104635) was isolated in pepper. The gene encoded 226 amino acids and shared high similarity with the MADS-box protein family, with a conservative MADS domain and semiconservative K domain. Furthermore, the expression of PAP3 was abundant only in petals and anthers but not in leaves. A functional study employing virus-induced gene silencing (VIGS) showed that knockdown of PAP3 led to the shriveling of pollen grains and male sterility; however, it did not affect petal development. These results suggest an essential role for PAP3 in the development of the pepper stamen and in contributing to the variation of floral traits

    The Double Burdens of Mental Health Among AIDS Patients With Fully Successful Immune Restoration: A Cross-Sectional Study of Anxiety and Depression in China

    Get PDF
    Background: Anxiety and depression continue to be significant comorbidities for people with HIV infection. We investigated the prevalence of and factors associated with anxiety and depression among adult HIV-infected patients across China.Methods: In this cross-sectional study, we described clinical and psychosocial variables related to depression and anxiety in 4103 HIV-infected persons. Doctors assessed anxiety and depression by asking patients whether they had experienced anxiety or depression in the prior month. Patients also self-administered the Hospital Anxiety and Depression (HAD) scale; those with score ≥8 on HAD-A/D were considered to be at high risk of anxiety or depression.Results: Associations between socio-demographic, psychosocial, and ART-related clinical factors and risk of depression or anxiety were investigated using multivariable logistic regression. Among patients assessed between 9/2014 and 11/2015, 27.4% had symptoms of anxiety, 32.9% had symptoms of depression, and 19.0% had both. Recentness of HIV diagnoses (P = 0.046) was associated with elevated odds of anxiety. Older age (P = 0.004), higher educational attainment (P < 0.001), employment (P = 0.001), support from family / friends (P < 0.001), and sleep disturbance (P < 0.001), and number of ART regimen switches (P = 0.046) were associated with risk of depression, while neither sex nor transmission route showed any associations. There were no significant associations with HIV-specific clinical factors including current CD4+ T cell count and current viral load.Conclusions: Prevalence of symptoms of anxiety and depression is high in this cohort of treatment-experienced HIV patients. Psychological and social-demographic factors, rather than HIV disease status, were associated with risk of depression and anxiety. This finding highlights the need to deliver interventions to address the mental health issues affecting HIV-infected persons with fully successful immune restoration across China

    A Coupled Model of Two-Phase Fluid Flow and Heat Transfer to Transient Temperature Distribution and Seepage Characteristics for Water-Flooding Production Well with Multiple Pay Zones

    No full text
    Temperature is one of the most prominent factors affecting production operations, predicting the accurate wellbore-formation temperature in a water-flooding production well is of great importance for multiple applications. In this paper, an improved coupled model of oil–water two-phase fluid flow and heat transfer was developed to investigate the transient temperature behavior for a producing well with multiple pay zones. Firstly, a novel method was derived to simulate the water saturation and the water breakthrough time (WBT) for tubing, which are key monitoring parameters in the process of water flooding. Then, we incorporated water saturation and an equation set for immiscible displacement to calculate the seepage velocity and the pressure of the two-phase fluid in the pay zones. Next, the upward seepage velocity of the tubing fluid change with depth was focused on, and the proper coupled initial and boundary conditions are presented at the interfaces, therewith the implicit finite difference method was used to compute the transient temperature with the input of the seepage characteristics for the reservoirs. Meanwhile, the validity of the proposed model has been verified by the typical model. Finally, a sensitivity analysis delineated that the production rate and the production time had a significant impact on the tubing fluid temperature. The overburden was hotter with a lower volumetric heat capacity or a higher thermal conductivity. In addition, the sensitivity of the porosity and the irreducible water saturation to formation temperature was significantly different before and after the WBT. The coupled model presented herein helps to advance the transient seepage characteristics analysis of pay zones, the precise temperature prediction is very useful for reservoir characterization and production analysis purposes and provides insight for designing the exploitation scheme in deep reservoirs and geothermal resources

    Lithology and mineralogy recognition from geochemical logging tool data using multivariate statistical analysis

    No full text
    The availability of a deep well that penetrates deep into the Ultra High Pressure (UHP) metamorphic rocks is unusual and consequently offers a unique chance to study the metamorphic rocks. One such borehole is located in the southern part of Donghai County in the Sulu UHP metamorphic belt of Eastern China, from the Chinese Continental Scientific Drilling Main hole. This study reports the results obtained from the analysis of oxide log data. A geochemical logging tool provides in situ, gamma ray spectroscopy measurements of major and trace elements in the borehole. Dry weight percent oxide concentration logs obtained for this study were SiO2, K2O, TiO2, H2O, CO2, Na2O, Fe2O3, FeO, CaO, MnO, MgO, P2O5 and Al2O3. Cross plot and Principal Component Analysis methods were applied for lithology characterization and mineralogy description respectively. Cross plot analysis allows lithological variations to be characterized. Principal Component Analysis shows that the oxide logs can be summarized by two components related to the feldspar and hydrous minerals. This study has shown that geochemical logging tool data is accurate and adequate to be tremendously useful in UHP metamorphic rocks analysis

    Quantitative Characterization of Shallow Marine Sediments in Tight Gas Fields of Middle Indus Basin: A Rational Approach of Multiple Rock Physics Diagnostic Models

    No full text
    For the successful discovery and development of tight sand gas reserves, it is necessary to locate sand with certain features. These features must largely include a significant accumulation of hydrocarbons, rock physics models, and mechanical properties. However, the effective representation of such reservoir properties using applicable parameters is challenging due to the complicated heterogeneous structural characteristics of hydrocarbon sand. Rock physics modeling of sandstone reservoirs from the Lower Goru Basin gas fields represents the link between reservoir parameters and seismic properties. Rock physics diagnostic models have been utilized to describe the reservoir sands of two wells inside this Middle Indus Basin, including contact cement, constant cement, and friable sand. The results showed that sorting the grain and coating cement on the grain’s surface both affected the cementation process. According to the models, the cementation levels in the reservoir sands of the two wells ranged from 2% to more than 6%. The rock physics models established in the study would improve the understanding of characteristics for the relatively high Vp/Vs unconsolidated reservoir sands under study. Integrating rock physics models would improve the prediction of reservoir properties from the elastic properties estimated from seismic data. The velocity–porosity and elastic moduli-porosity patterns for the reservoir zones of the two wells are distinct. To generate a rock physics template (RPT) for the Lower Goru sand from the Early Cretaceous period, an approach based on fluid replacement modeling has been chosen. The ratio of P-wave velocity to S-wave velocity (Vp/Vs) and the P-impedance template can detect cap shale, brine sand, and gas-saturated sand with varying water saturation and porosity from wells in the Rehmat and Miano gas fields, both of which have the same shallow marine depositional characteristics. Conventional neutron-density cross-plot analysis matches up quite well with this RPT’s expected detection of water and gas sands

    Quantitative Characterization of Shallow Marine Sediments in Tight Gas Fields of Middle Indus Basin: A Rational Approach of Multiple Rock Physics Diagnostic Models

    No full text
    For the successful discovery and development of tight sand gas reserves, it is necessary to locate sand with certain features. These features must largely include a significant accumulation of hydrocarbons, rock physics models, and mechanical properties. However, the effective representation of such reservoir properties using applicable parameters is challenging due to the complicated heterogeneous structural characteristics of hydrocarbon sand. Rock physics modeling of sandstone reservoirs from the Lower Goru Basin gas fields represents the link between reservoir parameters and seismic properties. Rock physics diagnostic models have been utilized to describe the reservoir sands of two wells inside this Middle Indus Basin, including contact cement, constant cement, and friable sand. The results showed that sorting the grain and coating cement on the grain’s surface both affected the cementation process. According to the models, the cementation levels in the reservoir sands of the two wells ranged from 2% to more than 6%. The rock physics models established in the study would improve the understanding of characteristics for the relatively high Vp/Vs unconsolidated reservoir sands under study. Integrating rock physics models would improve the prediction of reservoir properties from the elastic properties estimated from seismic data. The velocity–porosity and elastic moduli-porosity patterns for the reservoir zones of the two wells are distinct. To generate a rock physics template (RPT) for the Lower Goru sand from the Early Cretaceous period, an approach based on fluid replacement modeling has been chosen. The ratio of P-wave velocity to S-wave velocity (Vp/Vs) and the P-impedance template can detect cap shale, brine sand, and gas-saturated sand with varying water saturation and porosity from wells in the Rehmat and Miano gas fields, both of which have the same shallow marine depositional characteristics. Conventional neutron-density cross-plot analysis matches up quite well with this RPT’s expected detection of water and gas sands

    Characterization of the Molecular Events Underlying the Establishment of Axillary Meristem Region in Pepper

    No full text
    Plant architecture is a major motif of plant diversity, and shoot branching patterns primarily determine the aerial architecture of plants. In this study, we identified an inbred pepper line with fewer lateral branches, 20C1734, which was free of lateral branches at the middle and upper nodes of the main stem with smooth and flat leaf axils. Successive leaf axil sections confirmed that in normal pepper plants, for either node n, Pn (Primordium n) n+1 n+3 < 1 cm was fully developed and formed a completely new organ. In 20C1734, the normal axillary meristematic tissue region establishment and meristematic cell identity confirmation could not be performed on the axils without axillary buds. Comparative transcriptome analysis revealed that “auxin-activated signaling pathway”, “response to auxin”, “response to abscisic acid”, “auxin biosynthetic process”, and the biosynthesis of the terms/pathways, such as “secondary metabolites”, were differentially enriched in different types of leaf axils at critical periods of axillary meristem development. The accuracy of RNA-seq was verified using RT-PCR for some genes in the pathway. Several differentially expressed genes (DEGs) related to endogenous phytohormones were targeted, including several genes of the PINs family. The endogenous hormone assay showed extremely high levels of IAA and ABA in leaf axils without axillary buds. ABA content in particular was unusually high. At the same time, there is no regular change in IAA level in this type of leaf axils (normal leaf axils will be accompanied by AM formation and IAA content will be low). Based on this, we speculated that the contents of endogenous hormones IAA and ABA in 20C1734 plant increased sharply, which led to the abnormal expression of genes in related pathways, which affected the formation of Ams in leaf axils in the middle and late vegetative growth period, and finally, nodes without axillary buds and side branches appeared
    corecore