5 research outputs found
A comprehensive AI model development framework for consistent Gleason grading
Background: Artificial Intelligence(AI)-based solutions for Gleason grading hold promise for pathologists, while image quality inconsistency, continuous data integration needs, and limited generalizability hinder their adoption and scalability. Methods: We present a comprehensive digital pathology workflow for AI-assisted Gleason grading. It incorporates A!MagQC (image quality control), A!HistoClouds (cloud-based annotation), Pathologist-AI Interaction (PAI) for continuous model improvement, Trained on Akoya-scanned images only, the model utilizes color augmentation and image appearance migration to address scanner variations. We evaluate it on Whole Slide Images (WSI) from another five scanners and conduct validations with pathologists to assess AI efficacy and PAI. Results: Our model achieves an average F1 score of 0.80 on annotations and 0.71 Quadratic Weighted Kappa on WSIs for Akoya-scanned images. Applying our generalization solution increases the average F1 score for Gleason pattern detection from 0.73 to 0.88 on images from other scanners. The model accelerates Gleason scoring time by 43% while maintaining accuracy. Additionally, PAI improve annotation efficiency by 2.5 times and led to further improvements in model performance. Conclusions: This pipeline represents a notable advancement in AI-assisted Gleason grading for improved consistency, accuracy, and efficiency. Unlike previous methods limited by scanner specificity, our model achieves outstanding performance across diverse scanners. This improvement paves the way for its seamless integration into clinical workflows
Thermal sensor analysis for prediction of comfort levels of human body in air-conditioned environment
Substantial amount of energy is spent in air-conditioning systems in the buildings. However, they often result in over-cooling which may lead to huge waste of energy, as well as dissatisfaction of occupants. The desirable air-conditioning systems should not only create a thermally comfortable environment for occupants but also reduce energy cost as much as possible. To achieve this goal, the control of the air-conditioning should take occupants’ thermal sensation into account so that it can bring an optimal balance between thermal comfort and energy cost. Therefore, prediction of thermal comfort is crucial for this purpose.
Skin temperature has proved to be an effective indicator of thermal comfort level. In this work, an intelligent system is presented, which can obtain room temperature, relative humidity and skin temperature data from different sensors and predict the thermal comfort level automatically at every time instant. A thermal camera is used here to measure the skin temperature remotely. And MLP neural network and SVM are used as classifiers to predict the thermal sensation which is quantified using thermal sensation scale. Results show that the accuracy of this predictive model is high enough and SVM is preferred over the MLP neural network in this case.Master of Science (Computer Control and Automation
Predicting recurrence in osteosarcoma via a quantitative histological image classifier derived from tumour nuclear morphological features
Abstract Recurrence is the key factor affecting the prognosis of osteosarcoma. Currently, there is a lack of clinically useful tools to predict osteosarcoma recurrence. The application of pathological images for artificial intelligence‐assisted accurate prediction of tumour outcomes is increasing. Thus, the present study constructed a quantitative histological image classifier with tumour nuclear features to predict osteosarcoma outcomes using haematoxylin and eosin (H&E)‐stained whole‐slide images (WSIs) from 150 osteosarcoma patients. We first segmented eight distinct tissues in osteosarcoma H&E‐stained WSIs, with an average accuracy of 90.63% on the testing set. The tumour areas were automatically and accurately acquired, facilitating the tumour cell nuclear feature extraction process. Based on six selected tumour nuclear features, we developed an osteosarcoma histological image classifier (OSHIC) to predict the recurrence and survival of osteosarcoma following standard treatment. The quantitative OSHIC derived from tumour nuclear features independently predicted the recurrence and survival of osteosarcoma patients, thereby contributing to precision oncology. Moreover, we developed a fully automated workflow to extract quantitative image features, evaluate the diagnostic values of feature sets and build classifiers to predict osteosarcoma outcomes. Thus, the present study provides a novel tool for predicting osteosarcoma outcomes, which has a broad application prospect in clinical practice
Recommended from our members
Artificial intelligence-assisted quantification and assessment of whole slide images for pediatric kidney disease diagnosis.
MOTIVATION: Pediatric kidney disease is a widespread, progressive condition that severely impacts growth and development of children. Chronic kidney disease is often more insidious in children than in adults, usually requiring a renal biopsy for diagnosis. Biopsy evaluation requires copious examination by trained pathologists, which can be tedious and prone to human error. In this study, we propose an artificial intelligence (AI) method to assist pathologists in accurate segmentation and classification of pediatric kidney structures, named as AI-based Pediatric Kidney Diagnosis (APKD). RESULTS: We collected 2935 pediatric patients diagnosed with kidney disease for the development of APKD. The dataset comprised 93 932 histological structures annotated manually by three skilled nephropathologists. APKD scored an average accuracy of 94% for each kidney structure category, including 99% in the glomerulus. We found strong correlation between the model and manual detection in detected glomeruli (Spearman correlation coefficient r = 0.98, P < .001; intraclass correlation coefficient ICC = 0.98, 95% CI = 0.96-0.98). Compared to manual detection, APKD was approximately 5.5 times faster in segmenting glomeruli. Finally, we show how the pathological features extracted by APKD can identify focal abnormalities of the glomerular capillary wall to aid in the early diagnosis of pediatric kidney disease. AVAILABILITY AND IMPLEMENTATION: https://github.com/ChunyueFeng/Kidney-DataSet
Recommended from our members
A comprehensive AI model development framework for consistent Gleason grading.
BACKGROUND: Artificial Intelligence(AI)-based solutions for Gleason grading hold promise for pathologists, while image quality inconsistency, continuous data integration needs, and limited generalizability hinder their adoption and scalability. METHODS: We present a comprehensive digital pathology workflow for AI-assisted Gleason grading. It incorporates A!MagQC (image quality control), A!HistoClouds (cloud-based annotation), Pathologist-AI Interaction (PAI) for continuous model improvement, Trained on Akoya-scanned images only, the model utilizes color augmentation and image appearance migration to address scanner variations. We evaluate it on Whole Slide Images (WSI) from another five scanners and conduct validations with pathologists to assess AI efficacy and PAI. RESULTS: Our model achieves an average F1 score of 0.80 on annotations and 0.71 Quadratic Weighted Kappa on WSIs for Akoya-scanned images. Applying our generalization solution increases the average F1 score for Gleason pattern detection from 0.73 to 0.88 on images from other scanners. The model accelerates Gleason scoring time by 43% while maintaining accuracy. Additionally, PAI improve annotation efficiency by 2.5 times and led to further improvements in model performance. CONCLUSIONS: This pipeline represents a notable advancement in AI-assisted Gleason grading for improved consistency, accuracy, and efficiency. Unlike previous methods limited by scanner specificity, our model achieves outstanding performance across diverse scanners. This improvement paves the way for its seamless integration into clinical workflows