263 research outputs found

    Phase Transformations of Metallorganic Chemical Vapor Deposition Processed Alumina Coatings Investigated by In Situ Deflection

    Get PDF
    Phase transformations of Al2O3 films, deposited by metallorganic chemical vapor deposition from aluminium tri-isopropoxide on AISI 301 stainless steel, were investigated using an original technique of deflection associated with X-ray diffraction and electron microscopy. The samples were first oxidized at 1123 K in air to obtain a 0.9 m thick Cr2O3 protective oxide film on one side of the samples. Then, 1 m thick amorphous Al2O3 films were deposited on the opposite side at 823 K and 2 kPa. The deflection of such dissymmetrical samples was recorded during anisothermal treatments, consisting in slow heating to 1173 K in Ar atmosphere. The coefficient of thermal expansion of both the Cr2O3 and the amorphous Al2O3 films was determined to be 710−6 K−1 and 14.7 10−6 K−1, respectively. Crystallization kinetics of amorphous to mainly –Al2O3 become significant at temperatures equal or greater than 983 K. Transformation of metastable Al2O3 to –Al2O3 is initiated below 1173 K. It is demonstrated that deflection is a powerful tool for investigating the behavior of thin films deposited on a substrate and especially to reveal transformations occurring in these films during heat-treatments

    Experimental and ab initio infrared study of χ-, κ- and α-aluminas formed from gibbsite

    Get PDF
    χ-, κ- and α-alumina phases formed by dehydration of micro-grained gibbsite between 773 and 1573 K are studied using infrared spectroscopy (IR). The structural transitions evidenced by X-ray diffraction (XRD) were interpreted by comparing IR measurements with ab initio simulations (except for the χ form whose complexity does not allow a reliable simulation). For each phase, IR spectrum presents specific bands corresponding to transverse optical (TO) modes of Al-O stretching and bending under 900 cm-1. The very complex χ phase, obtained at 773 K, provides a distinctive XRD pattern in contrast with the IR absorbance appearing as a broad structure extending between 200 and 900 cm-1 resembling the equivalent spectra for γ-alumina phase. κ-alumina is forming at 1173 K and its rich IR spectrum is in good qualitative agreement with ab initio simulations. This complexity reflects the large number of atoms in the κ-alumina unit cell and the wide range of internuclear distances as well as the various coordinances of both Al and O atoms. Ab initio simulations suggest that this form of transition alumina demonstrates a strong departure from the simple pattern observed for other transition alumina. At 1573 K, the stable α-Αl2Ο3 develops. Its IR spectra extends in a narrower energy range as compared to transition alumina and presents characteristics features similar to model α-Αl2Ο3{dot operator} Ab initio calculations show again a very good general agreement with the observed IR spectra for this phase. In addition, for both κ- and α-Αl2Ο3, extra modes, measured at high energy (above 790 cm-1 for κ and above 650 cm-1 for α), can originate from either remnant χ-alumina or from surface mode

    Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    Full text link
    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured
    • …
    corecore