11 research outputs found

    Neurofibromatosis 2011: a report of the Children's Tumor Foundation annual meeting.

    Get PDF
    The 2011 annual meeting of the Children's Tumor Foundation, the annual gathering of the neurofibromatosis (NF) research and clinical communities, was attended by 330 participants who discussed integration of new signaling pathways into NF research, the appreciation for NF mutations in sporadic cancers, and an expanding pre-clinical and clinical agenda. NF1, NF2, and schwannomatosis collectively affect approximately 100,000 persons in US, and result from mutations in different genes. Benign tumors of NF1 (neurofibroma and optic pathway glioma) and NF2 (schwannoma, ependymoma, and meningioma) and schwannomatosis (schwannoma) can cause significant morbidity, and there are no proven drug treatments for any form of NF. Each disorder is associated with additional manifestations causing morbidity. The research presentations described in this review covered basic science, preclinical testing, and results from clinical trials, and demonstrate the remarkable strides being taken toward understanding of and progress toward treatments for these disorders based on the close interaction among scientists and clinicians

    Populations of Radial Glial Cells Respond Differently to Reelin and Neuregulin1 in a Ferret Model of Cortical Dysplasia

    Get PDF
    Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not

    The Learning Disabilities Network (LeaDNet): Using Neurofibromatosis Type 1 (NF1) as a Paradigm for Translational Research

    No full text
    Learning disabilities and other cognitive disorders represent one of the most important unmet medical needs and a significant source of lifelong disability. To accelerate progress in this area, an international consortium of researchers and clinicians, the Learning Disabilities Network (LeaDNet), was established in 2006. Initially, LeaDNet focused on neurofibromatosis type 1 (NF1), a common single gene disorder with a frequency of 1:3,000. Although NF1 is best recognized as an inherited tumor predisposition syndrome, learning, cognitive, and neurobehavioral deficits account for significant morbidity in this condition and can have a profound impact on the quality of life of affected individuals. Recently, there have been groundbreaking advances in our understanding of the molecular, cellular, and neural systems underpinnings of NF1-associated learning deficits in animal models, which precipitated clinical trials using a molecularly targeted treatment for these deficits. However, much remains to be learned about the spectrum of cognitive, neurological, and psychiatric phenotypes associated with the NF1 clinical syndrome. In addition, there is a pressing need to accelerate the identification of specific clinical targets and treatments for these phenotypes. The successes with NF1 have allowed LeaDNet investigators to broaden their initial focus to other genetic disorders characterized by learning disabilities and cognitive deficits including other RASopathies (caused by changes in the Ras signaling pathway). The ultimate mission of LeaDNet is to leverage an international translational consortium of clinicians and neuroscientists to integrate bench-to-bedside knowledge across a broad range of cognitive genetic disorders, with the goal of accelerating the development of rational and biologically based treatments. (C) 2012 Wiley Periodicals, Inc

    Am J Med Genet A

    No full text
    The skeleton is frequently affected in individuals with neurofibromatosis type 1, and some of these bone manifestations can result in significant morbidity. The natural history and pathogenesis of the skeletal abnormalities of this disorder are poorly understood and consequently therapeutic options for these manifestations are currently limited. The Children's Tumor Foundation convened an International Neurofibromatosis Type 1 Bone Abnormalities Consortium to address future directions for clinical trials in skeletal abnormalities associated with this disorder. This report reviews the clinical skeletal manifestations and available preclinical mouse models and summarizes key issues that present barriers to optimal clinical management of skeletal abnormalities in neurofibromatosis type 1. These concepts should help advance optimal clinical management of the skeletal abnormalities in this disease and address major difficulties encountered for the design of clinical trials

    Approaches to treating NF1 tibial pseudarthrosis: Consensus from the children\u27s tumor foundation NF1 bone abnormalities consortium

    No full text
    BACKGROUND: Neurofibromatosis 1 (NF1) is an autosomal dominant disorder with various skeletal abnormalities occurring as part of a complex phenotype. Tibial dysplasia, which typically presents as anterolateral bowing of the leg with subsequent fracture and nonunion (pseudarthrosis), is a serious but infrequent osseous manifestation of NF1. Over the past several years, results from clinical and experimental studies have advanced our knowledge of the role of NF1 in bone. On the basis of current knowledge, we propose a number of concepts to consider as a theoretical approach to the optimal management of tibial pseudarthrosis. METHODS: A literature review for both clinical treatment and preclinical models for tibial dysplasia in NF1 was performed. Concepts were discussed and developed by experts who participated in the Children\u27s Tumor Foundation sponsored International Bone Abnormalities Consortium meeting in 2011. RESULTS: Concepts for a theoretical approach to treating tibial pseudarthrosis include: bone fixation appropriate to achieve stability in any given case; debridement of the fibrous pseudarthrosis tissue between the bone segments associated with the pseudarthrosis; creating a healthy vascular bed for bone repair; promoting osteogenesis; controlling overactive bone resorption (catabolism); prevention of recurrence of the fibrous pseudarthrosis tissue ; and achievement of long-term bone health to prevent recurrence. CONCLUSIONS: Clinical trials are needed to assess effectiveness of the wide variation of surgical and pharmacologic approaches currently in practice for the treatment of tibial pseudarthrosis in NF1. LEVEL OF EVIDENCE: Level V, expert opinion. Copyright © 2013 by Lippincott Williams & Wilkins

    Back to the future: Proceedings from the 2010 NF Conference How to Cite this Article: Huson SM, Acosta MT, Belzberg AJ, Bernards A, Chernoff J, Cichowski K, Gareth Evans D, Ferner RE, Giovannini M, Korf BR, Listernick R, North KN, Packer RJ, Parada LF, Peltonen J, Ramesh V, Reilly KM, Risner JW, Schorry EK, Uphadyaya M, Viskochil DH, Zhu Y, Hunter-Schaedle K, Giancotti FG. 2011. Back to the future: Proceedings from the 2010 NF Conference. Am J Med Genet Part A 155:307–321.

    Full text link
    The neurofibromatoses (NF) encompass the rare diseases NF1, NF2, and schwannomatosis. The NFs affect 100,000 Americans; over 2 million persons worldwide; and are caused by mutation of tumor suppressor genes. Individuals with NF1 in particular may develop tumors anywhere in the nervous system; additional manifestations can include learning disabilities, bone dysplasia, cardiovascular defects, unmanageable pain, and physical disfigurement. Ultimately, the NFs can cause blindness, deafness, severe morbidity, and increased mortality and NF1 includes a risk of malignant cancer. Today there is no treatment for the NFs (other than symptomatic); however, research efforts to understand these genetic conditions have made tremendous strides in the past few years. Progress is being made on all fronts, from discovery studies—understanding the molecular signaling deficits that cause the manifestations of NF—to the growth of preclinical drug screening initiatives and the emergence of a number of clinical trials. An important element in fuelling this progress is the sharing of knowledge, and to this end, for over 20 years the Children's Tumor Foundation has convened an annual NF Conference, bringing together NF professionals to share ideas and build collaborations. The 2010 NF Conference held in Baltimore, MD June 5–8, 2010 hosted over 300 NF researchers and clinicians. This paper provides a synthesis of the highlights presented at the Conference and as such, is a “state-of-the-field” for NF research in 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79423/1/33804_ftp.pd
    corecore