25,430 research outputs found
Dynamics of particle-particle collisions in a viscous liquid
When two solid spheres collide in a liquid, the dynamic collision process is slowed by viscous dissipation and the increased pressure in the interparticle gap as compared with dry collisions. This paper investigates liquid-immersed head-on and oblique collisions, which complements previously investigated particle-on-wall immersed collisions. By defining the normal from the line of centers at contact, the experimental findings support the decomposition of an oblique collision into its normal and tangential components of motion. The normal relative particle motion is characterized by an effective coefficient of restitution and a binary Stokes number with a correlation that follows the particle-wall results. The tangential motion is described by a collision model using a normal coefficient of restitution and a friction coefficient that are modified for the liquid effects
The impulsive motion of a liquid resulting from a particle collision
When two particles collide in a liquid, the impulsive acceleration due to the rebound produces a pressure pulse that is transmitted through the fluid. Detailed measurements
were made of the pressure pulse and the motion of the particles by generating controlled collisions with an immersed dual pendulum. The experiments were performed for a range of impact velocities, angles of incidence, and distances between the wall and the pairs of particles. The radiated fluid pressure was measured using a high-frequency-response pressure transducer, and the motion of the particles was recorded using a high-speed digital camera. The magnitude of the impulse pressure was found to scale with the particle velocity, the particle diameter and the density of the fluid. Additionally, a model is proposed to predict the impulse field in the fluid based on the impulse pressure theory. The model agrees well with the experimental measurements
Investigation of compounds essential for the origin of life
Nucleic acid sequencing as a technique to determine the chemical and biological evolution of certain prokaryotic metabolic pathways is discussed. Protein in data and a microbiological organization of the prokaryotes is included
Managing professional identity within a changing market environment: New Zealand optometrists’ responses to the growth of corporate optometry
This research investigated the effects of changes in the market environment for optometry services and products on the professional identity of New Zealand optometrists. It explored three issues. First, ways participants’ location within either the independent or corporate sectors shaped their professional identities. Second, ways potential ethical conflicts between participants’ healthcare and retailing identities were resolved. Last, participants’ opinions concerning the future of their profession. Twelve male and fourteen female optometrists were interviewed. Nineteen participants worked within independent optometry practices. Seven worked within practices that were part of international optometry chains. Six participants were recent graduates, the rest experienced optometrists. All participants identified primarily as healthcare professionals. All recognised that practising optometry within a commercial market created the possibility of ethical conflicts between healthcare and business imperatives. There were differences in the ways participants managed this boundary, with participants working within corporate optometry seeming more comfortable with the business aspects of their profession. All participants thought the profession was changing and several suggested that the future of independent optometry was limited. The article concludes that recent changes within the market environment of optometry have heightened tensions between optometrists’ medical and entrepreneurial identities and contributed to changing work patterns within the profession.fals
Granular Flow in a Vertically Vibrating Hopper
The behavior of the flow of glass spheres in a vertically vibrating hopper is examined. A two-dimensional hopper is mounted on a shaker that provides sinusoidal, vertical vibrations. Both the frequency and amplitude of the vibrations are adjustable. Hopper discharge rates and flow patterns are measured as the acceleration amplitude of the vibrations is increased from 0 to 4g's. Comparisons are made with unvibrated hopper flows and with a two-dimensional discrete element simulation model
The effects of a counter-current interstitial flow on a discharging hourglass
This work experimentally investigates the effects of an interstitial fluid on the discharge of granular material within an hourglass. The experiments include observations of the flow patterns, measurements of the discharge rates, and pressure variations for a range of different fluid viscosities, particle densities and diameters, and hourglass geometries. The results are classified into three regimes: (i) granular flows with negligible interstitial fluid effects; (ii) flows affected by the presence of the interstitial fluid; and (iii) a no-flow region in which particles arch across the orifice and do not discharge. Within the fluid-affected region, the flows were visually classified as lubricated and air-coupled flows, oscillatory flows, channeling flows in which the flow preferentially rises along the sidewalls, and fluidized flows in which the upward flow suspends the particles. The discharge rates depends on the Archimedes number, the ratio of the effective hopper diameter to the particle diameter, and hourglass geometry. The hopper-discharge experiments, as well as experiments found in the literature, demonstrate that the presence of the interstitial fluid is important when the nondimensional ratio (N) of the single-particle terminal velocity to the hopper discharge velocity is less than 10. Flow ceased in all experiments in which the particle diameter was greater than 25% of the effective hopper diameter regardless of the interstitial fluid
Integrated maneuvering and life support system simulation Final report
Integrated maneuvering and life support system simulatio
Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow
Measurements were made of two components of the average and fluctuating velocities, and of the local self-diffusion coefficients in a flow of granular material. The experiments were performed in a 1 m-high vertical channel with roughened sidewalls and with polished glass plates at the front and the back to create a two-dimensional flow. The particles used were glass spheres with a nominal diameter of 3 mm. The flows were high density and were characterized by the presence of long-duration frictional contacts between particles. The velocity measurements indicated that the flows consisted of a central uniform regime and a shear regime close to the walls. The fluctuating velocities in the transverse direction increased in magnitude from the centre towards the walls. A similar variation was not observed for the streamwise fluctuations. The self-diffusion coefficients showed a significant dependence on the fluctuating velocities and the shear rate. The velocity fluctuations were highly anistropic with the streamwise components being 2 to 2.5 times the transverse components. The self-diffusion coefficients for the streamwise direction were an order-of-magnitude higher than those for the transverse direction. The surface roughness of the particles led to a decrease in the self-diffusion coefficients
- …