24 research outputs found

    Polarized light scattering by aerosols in the marine atmospheric boundary layer

    Get PDF
    The intensity and polarization of light scattered from marine aerosols affect visibility and contrast in the marine atmospheric boundary layer (MABL). The polarization properties of scattered light in the MABL vary with size, refractive index, number distributions, and environmental conditions. Laboratory measurements were used to determine the characteristics and variability of the polarization of light scattered by aerosols similar to those in the MABL. Scattering from laboratory-generated sea-salt-containing (SSC) [NaCl, (NH4)2SO4, and seawater] components of marine aerosols was measured with a scanning polarization-modulated nephelometer. Mie theory with Gaussian and log normal size distributions of spheres was used to calculate the polarized light scattering from various aerosol composition models and from experimentally determined distributions of aerosols in the marine boundary layer. The modeling was verified by comparison with scattering from distilled water aerosols. The study suggests that polarimetric techniques can be used to enhance techniques for improving visibility and remote imaging for various aerosol types, Sun angles, and viewing conditions

    Structural Formation Studies of UV-Catalyzed Gels and Aerogels by Light Scattering

    Get PDF
    The skeletal structure of aerogel is determined before, during, and after the gel is formed. Supercritical drying of aerogel largely preserves the pore structure that is determined near the time of gelation. To better understand these gel formation mechanisms we carried out measurements of the time evolution of light scattering in a series of gels prepared without conventional acid or base catalysis. Instead, ultraviolet light was used to catalyze the formation of silica gels made from the hydrolysis of tetraethylorthosilicate and partly prehydrolyzed tetraethylorthosilicate in ethanol. Time evolution of light scattering provides information regarding the rate and geometrical nature of the assembly of the primary silica particles formed in the sol. UV-catalyzed gels show volumetric growth typical of acid-catalyzed gels, except when UV exposure is discontinued at the gel point, where gels then show linear chain formation typical of base-catalyzed gels. Long term UV exposure leads to coarsening of the pore network, a decrease in the clarity of the aerogel, and an increase in the surface area of the aerogel. Additionally, UV exposure up to the gel point leads to increased crystallinity in the final aerogel

    Synthesis and properties of chitosan-silica hybrid aerogels

    Get PDF
    Abstract Chitosan, a polymer that is soluble in dilute aqueous acid, is derived from chitin, a natural polyglucosamide. Aquagels where the solid phase consists of both chitosan and silica can be easily prepared by using an acidic solution of chitosan to catalyze the hydrolysis and condensation of tetraethylorthosilicate. Gels with chitosan/TEOS mass ratios of 0.1-1.1 have been prepared by this method. Standard drying processes using CO 2 give the corresponding aerogels. The amount of chitosan in the gel plays a role in the shrinkage of the aerogel during drying. Gels with the lowest chitosan/silica ratios show the most linear shrinkage, up to 24%, while those with the highest ratios show only a 7% linear shrinkage. Pyrolysis at 700 °C under nitrogen produces a darkened aerogel due to the thermal decomposition of the chitosan, however, the aerogel retains its monolithic form. The pyrolyzed aerogels absorb slightly more infrared radiation in the 2-5 μm region than the original aerogels. B.E.T. surface areas of these aerogels range from 470-750 m 2 /g. Biocompatibility screening of this material shows a very high value for hemolysis, but a low value for cytotoxicity
    corecore