1,586 research outputs found

    Developing physical capability standards that are predictive of success on special forces selection courses

    Get PDF
    Free to read This study aimed to develop minimum standards for physical capability assessments (vertical jump, sit and reach, push-ups, seven-stage sit-ups, heaves, agility, 20-m shuttle run, loaded 5-km pack march, and 400-m swim) that candidates must pass before they can commence Australian Army Special Forces (SF) selection courses. Soldiers (Part A: n = 104; Part B: n = 92) completed the physical capability assessments before commencing a SF selection course. At the beginning of these selection courses, participants attempted two barrier assessments (3.2-km battle run and 20-km march). Statistical analysis revealed several physical capability assessments were associated with performance on the barrier assessments and selection course outcome (Part A); however, these statistical models were unable to correctly classify all candidates as likely to pass or fail the selection course. Alternatively, manual analysis identified a combination of physical capability standards that correctly classified 14% to 18% of candidates likely to fail, without excluding any candidates able to pass (Part A). The standards were applied and refined through Part B and included completing the 5-km pack march in ≤45:45 minutes : seconds, achieving ≥level five on the sit-up test, or completing ≥66 push-ups. Implementation of these standards may reduce attrition rates and enhance the efficiency of the SF recruitment process

    Negligible heat strain in armored vehicle officers wearing personal body armor

    Get PDF
    Objectives This study evaluated the heat strain experienced by armored vehicle officers (AVOs) wearing personal body armor (PBA) in a sub-tropical climate. Methods Twelve male AVOs, aged 35-58 years, undertook an eight hour shift while wearing PBA. Heart rate and core temperature were monitored continuously. Urine specific gravity (USG) was measured before and after, and with any urination during the shift. Results Heart rate indicated an intermittent and low-intensity nature of the work. USG revealed six AVOs were dehydrated from pre through post shift, and two others became dehydrated. Core temperature averaged 37.4 ± 0.3°C, with maximum's of 37.7 ± 0.2°C. Conclusions Despite increased age, body mass, and poor hydration practices, and Wet-Bulb Globe Temperatures in excess of 30°C; the intermittent nature and low intensity of the work prevented excessive heat strain from developing

    Identification, Biology, Impacts, and Management of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Soybean and Corn in the Midwestern United States

    Get PDF
    Stink bugs (Hemiptera: Heteroptera: Pentatomidae) are an emerging threat to soybean and corn production in the midwestern United States. An invasive species, the brown marmorated stink bug, Halyomorpha halys (Sta° l), is spreading through the region. However, little is known about the complex of stink bug species associated with corn and soybean in the midwestern United States. In this region, particularly in the more northern states, stink bugs have historically caused only infrequent impacts to these crops. To prepare growers and agricultural professionals to contend with this new threat, we provide a review of stink bugs associated with soybean and corn in the midwestern United States. Descriptions and images of common stink bug species are provided as a diagnostic aid. The biologies and impacts of stink bugs to crops are discussed, with particular attention to differences among species. Based primarily on information from southern states, scouting, thresholds, and insecticide-based management of these pests are discussed. It is hoped that this review will provide stakeholders sufficient information for management of these pests, until more region-specific research can be performed on stink bugs in soybean and corn in the midwestern United States

    Staircase Codes: FEC for 100 Gb/s OTN

    Full text link
    Staircase codes, a new class of forward-error-correction (FEC) codes suitable for high-speed optical communications, are introduced. An ITU-T G.709-compatible staircase code with rate R=239/255 is proposed, and FPGA-based simulation results are presented, exhibiting a net coding gain (NCG) of 9.41 dB at an output error rate of 1E-15, an improvement of 0.42 dB relative to the best code from the ITU-T G.975.1 recommendation. An error floor analysis technique is presented, and the proposed code is shown to have an error floor at 4.0E-21.Comment: To appear in IEEE/OSA J. of Lightwave Technolog
    • …
    corecore