6 research outputs found

    Konzeption, Ansteuerung und Eigenschaften schneller piezoelektrischer Trägheitsmotoren

    Get PDF
    Piezoelektrische Trägheitsmotoren nutzen die Trägheit einer bewegten Masse, um diese über einen ununterbrochenen Reibkontakt schrittweise zu bewegen. Wegen ihres einfachen Aufbaus und ihrer guten Miniaturisierbarkeit werden diese Motoren zunehmend in Konsumgütern eingesetzt. Die Geschwindigkeit ist eine wichtige Motorkenngröße, eine allgemeingültige Analyse des Motorprinzips existiert jedoch bisher nicht.Nach einer Definition von Trägheitsmotoren werden anhand eines Modells eines translatorischen piezoelektrischen Trägheitsmotors verschiedene idealisierte Anregungssignale hergeleitet. Eine Analyse des Motorverhaltens zeigt, dass der verbreitete Betrieb von Trägheitsmotoren mit Haft- und Gleitphasen für das Erreichen hoher Geschwindigkeiten ungeeignet ist. Aus den idealisierten Signalen für den schnellen dauergleitenden Betrieb werden frequenzbeschränkte Signale für den Betrieb mit realen Aktoren abgeleitet. Das Verhalten bei Anregung mit diesen Signalen wird bezüglich Geschwindigkeit, Effizienz, Haltbarkeit und Kraft verglichen. Zudem wird ein Verfahren beschrieben, mit dem die Bewegung hochfrequent angeregter Trägheitsmotoren periodenweise berechnet und wichtige Motorkenngrößen direkt berechnet werden können. Zur Validierung der theoretischen Ergebnisse wird ein Versuchsmotor aufgebaut und mit unterschiedlichen Signalen angeregt, es zeigt sich eine gute Übereinstimmung zwischen Messung und Modell. Die Ergebnisse dieser Arbeit geben wertvolle Einblicke in die Funktion schneller Trägheitsmotoren und sind nützlich für ihre weitere Entwicklung und die Erweiterung ihres Einsatzbereichs.Zugl.: Paderborn, Univ., Diss., 201

    Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives

    No full text
    Piezoelectric inertia motors—also known as stick-slip motors or (smooth) impact drives—use the inertia of a body to drive it in small steps by means of an uninterrupted friction contact. In addition to the typical advantages of piezoelectric motors, they are especially suited for miniaturisation due to their simple structure and inherent fine-positioning capability. Originally developed for positioning in microscopy in the 1980s, they have nowadays also found application in mass-produced consumer goods. Recent research results are likely to enable more applications of piezoelectric inertia motors in the future. This contribution gives a critical overview of their historical development, functional principles, and related terminology. The most relevant aspects regarding their design—i.e., friction contact, solid state actuator, and electrical excitation—are discussed, including aspects of control and simulation. The article closes with an outlook on possible future developments and research perspectives

    Mehrzieloptimierung und Verhaltensanpassung am Bondautomaten

    No full text
    Der Drahtbondprozess reagiert sehr empfindlich auf Veränderungen der Prozessparameter, der Umgebungsbedingungen und der Kontaktpartner. Während Prozessparameter bekannt und deterministisch sind, sind Umgebungsbedingungen nur schwierig zu bestimmen und Eigenschaftsschwankungen der Kontaktpartner sogar völlig unbekannt. Alle Veränderungen wirken sich auf die Qualität der fertigen Verbindung aus. Derartige Schwankungen sind in der Fertigung von Leistungshalbleitermodulen unerwünscht. Das aktuelle Vorgehen zur Sicherstellung der Qualität von Bondverbindungen für Leistungshalbleitermodule basiert auf der empirischen Bestimmung eines Parametersatzes. Dieser muss robust gegenüber deterministischen Störgrößen sein. Da der Bondprozess für Kupferdraht wesentlich sensitiver reagiert als der für Aluminiumdraht, ist die Wahl eines Parametersatzes immer ein Kompromiss. Eine auf vorab formulierten Zielen basierte Auswahl des aktuellen Parametersatzes während des Betriebs verspricht daher große Vorteile. Dazu wird eine modellbasierte Mehrzieloptimierung genutzt, die in diesem Kapitel im Detail beschrieben wird

    Intelligent production of wire bonds using multi-objective optimization - insights, opportunities and challenges

    No full text
    Ultrasonic wire bonding is an indispensable process in the industrial manufacturing of semiconductor devices. Copper wire is increasingly replacing the well-established aluminium wire because of its superior electrical, thermal and mechanical properties. Copper wire processes differ significantly from aluminium processes and are more sensitive to disturbances, which reduces the range of parameter values suitable for a stable process. Disturbances can be compensated by an adaption of process parameters, but finding suitable parameters manually is difficult and time-consuming. This paper presents a physical model of the ultrasonic wire bonding process including the friction contact between tool and wire. This model yields novel insights into the process. A prototype of a multi-objective optimizing bonding machine (MOBM) is presented. It uses multi-objective optimization, based on the complete process model, to automatically select the best operating point as a compromise of concurrent objectives

    Modellbildung fĂĽr das Ultraschall-Drahtbonden

    No full text
    Um eine modellbasierte Mehrzieloptimierung des Bondprozesses durchführen zu können, ist ein vollständiges Modell des abzubildenden Systems Voraussetzung, in diesem Fall also ein Modell des gesamten Ultraschall-Drahtbondprozesses. Das in diesem Kapitel vorgestellte Gesamtmodell ist aus Teilmodellen modular aufgebaut, die auch separat genutzt und validiert werden. Dabei werden die drei wichtigsten Aspekte beim Ultraschall-Drahtbonden aufgegriffen: Die Bestimmung der Kontaktdrücke zwischen Draht und Substrat, die Prozessdynamik und die Berechnung der Reibung und Anbindung
    corecore