3 research outputs found

    Acute effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity and cardiorespiratory responses in dogs

    Get PDF
    Funding: Silvia V. Conde declares that Galvani Bioelectronics provided funds to support their work associated with Type 2 diabetic project.New Findings: What is the central question of this study? What are the effects of insulin and insulin-induced hypoglycaemia on carotid body chemoreceptor activity in vivo and how do carotid body chemoreceptor stimulation-mediated cardiorespiratory responses in beagle dogs compare during euglycaemia and insulin-induced hypoglycaemia? What is the main finding and its importance? Intracarotid insulin administration leads to sustained increase in carotid body chemoreceptor activity and respiratory response with significant cardiovascular effects. Insulin-induced hypoglycaemia exacerbated NaCN-mediated carotid body chemoreceptor activity and respiratory response with enhanced cardiovascular reflex response. These findings suggest that insulin-induced hypoglycaemia augments the carotid body chemoreceptors to initiate the adaptive counter-regulatory responses to restore the normoglycaemic condition. Abstract: The carotid body chemoreceptors (CBC) play an important role in the adaptive counter-regulatory response to hypoglycaemia by evoking the CBC-mediated sympathetic neuronal system to restore normoglycaemia. Ex vivo studies have shown varied responses of insulin-induced hypoglycaemia on CBC function, and several in vivo studies have indirectly established the role of CBCs in restoring normoglycaemia in both animals and humans. However, a direct effect of insulin and/or insulin-induced hypoglycaemia on CBC activity is not established in animal models. Therefore, the aim of this study was to evaluate in vivo effects of insulin and insulin-induced hypoglycaemia on CBC activity and cardiorespiration in a preclinical large animal model. The carotid sinus nerve (CSN) activity and cardiorespiratory responses to sodium cyanide (NaCN; 25 µg/kg) were compared before (euglycaemic) and after (hypoglycaemic) intracarotid administration of insulin (12.5–100 µU/dogs) in beagle dogs. Insulin administration increased CSN activity and minute ventilation ((Formula presented.) E) with significant (P < 0.0001) effects on heart rate and blood pressure. Insulin-mediated effects on CSN and cardiorespiration were sustained and the change in (Formula presented.) E was driven by tidal volume only. Insulin significantly (P < 0.0001) lowered blood glucose level. NaCN-mediated CSN activity and (Formula presented.) E were significantly (P < 0.0001) augmented during insulin-induced hypoglycaemia. The augmented (Formula presented.) E was primarily driven by respiratory frequency and partially by tidal volume. The cardiovascular reflex response mediated through CBC stimulation was significantly (P < 0.0001) exacerbated during insulin-induced hypoglycaemia. Collectively, these results demonstrate direct effects of insulin and insulin-induced hypoglycaemia on CBC chemosensitivity to potentiate CBC-mediated neuroregulatory pathways to initiate adaptive neuroendocrine and cardiorespiratory counter-regulatory responses to restore normoglycaemia.publishersversionepub_ahead_of_prin

    Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium

    No full text
    corecore