71 research outputs found

    Estimating Disturbance Torque Effects on the Stability and Control Performance of Two-Axis Gimbal Systems

    Get PDF
    Introduction. Two-axis gimbal systems are applied for stabilizing and controlling the line of sight (LOS) of an optical or imaging system mounted on a moving vehicle. Gimbal systems are intended to isolate various disturbance torques and control the LOS toward the direction of a target. Two-axis gimbals can be of two main types, namely Yaw-Pitch and Swing-Roll type. In this article, we focus on investigating mathematical models of two-axis gimbals, which describe the impact of cross-disturbance torques on their stability and control performance. Simulations were conducted to compare advantages and disadvantages of the two types of two-axis gimbals.Aim. To study mathematical models describing the impact of cross-disturbance torques on the stability and control performance of two-axis gimbals.Materials and methods. Mathematical models of two-axis gimbal systems were synthesized by the Lagrange method. The operation of two-axis gimbal systems was simulated in the Matlab-Simulink environment. Results. Mathematical models and structural diagrams of the synthesized Yaw-Pitch and Swing-Roll gimbals were obtained. The conducted simulations of typical cases revealed different cross-disturbance effects.Conclusion. Motion equations for Swing-Roll and Yaw-Pitch gimbals were derived using similar methodology. The impact of cross-disturbance torques on gimbal systems was evaluated. The obtained results form a basis for selecting an optimal structure of tracking systems meeting the desired characteristics.Introduction. Two-axis gimbal systems are applied for stabilizing and controlling the line of sight (LOS) of an optical or imaging system mounted on a moving vehicle. Gimbal systems are intended to isolate various disturbance torques and control the LOS toward the direction of a target. Two-axis gimbals can be of two main types, namely Yaw-Pitch and Swing-Roll type. In this article, we focus on investigating mathematical models of two-axis gimbals, which describe the impact of cross-disturbance torques on their stability and control performance. Simulations were conducted to compare advantages and disadvantages of the two types of two-axis gimbals.Aim. To study mathematical models describing the impact of cross-disturbance torques on the stability and control performance of two-axis gimbals.Materials and methods. Mathematical models of two-axis gimbal systems were synthesized by the Lagrange method. The operation of two-axis gimbal systems was simulated in the Matlab-Simulink environment. Results. Mathematical models and structural diagrams of the synthesized Yaw-Pitch and Swing-Roll gimbals were obtained. The conducted simulations of typical cases revealed different cross-disturbance effects.Conclusion. Motion equations for Swing-Roll and Yaw-Pitch gimbals were derived using similar methodology. The impact of cross-disturbance torques on gimbal systems was evaluated. The obtained results form a basis for selecting an optimal structure of tracking systems meeting the desired characteristics

    Influence of ground motion duration on seismic fragility of base isolated NPP structures

    Get PDF
    This study investigates the influence of earthquake duration on seismic fragility of base isolated nuclear power plant (NPP) structures. Two groups of ground motions are employed in performing time history analyses, in which short duration (SD) and long duration (LD) characteristics are considered. The advanced power reactor 1400 (APR1400) NPP structures are used for developing finite element model, which is constructed using lumped-mass stick elements. A series of 486 lead rubber bearings (LRBs) are installed under the base mat of the NPP structures to reduce the seismic damage. Seismic responses of the base isolated NPP are quantified in terms of lateral displacements and hysteretic energy distributions of LRBs. Seismic fragility curves for damage states, which are defined based on the deformation of LRB, are developed. The results reveal that the average lateral displacements of LRBs under SD and LD motions are very similar. For PGA larger than 0.4g, the mean deformation of LRB for LD motions is higher than that for SD motions. The probability of damage of base isolated NPP structures under LD motions is reduced approximately 15% compared to that asubjected to SD earthquakes. This finding emphasizes that it is crucial to use both SD and LD ground motions in seismic evaluations of base isolated NPP structure

    Influence of ground motion duration on seismic fragility of base isolated NPP structures

    Get PDF
    This study investigates the influence of earthquake duration on seismic fragility of base isolated nuclear power plant (NPP) structures. Two groups of ground motions are employed in performing time history analyses, in which short duration (SD) and long duration (LD) characteristics are considered. The advanced power reactor 1400 (APR1400) NPP structures are used for developing finite element model, which is constructed using lumped-mass stick elements. A series of 486 lead rubber bearings (LRBs) are installed under the base mat of the NPP structures to reduce the seismic damage. Seismic responses of the base isolated NPP are quantified in terms of lateral displacements and hysteretic energy distributions of LRBs. Seismic fragility curves for damage states, which are defined based on the deformation of LRB, are developed. The results reveal that the average lateral displacements of LRBs under SD and LD motions are very similar. For PGA larger than 0.4g, the mean deformation of LRB for LD motions is higher than that for SD motions. The probability of damage of base isolated NPP structures under LD motions is reduced approximately 15% compared to that asubjected to SD earthquakes. This finding emphasizes that it is crucial to use both SD and LD ground motions in seismic evaluations of base isolated NPP structure

    Influence of ground motion duration on seismic fragility of base isolated NPP structures

    Get PDF
    This study investigates the influence of earthquake duration on seismic fragility of base isolated nuclear power plant (NPP) structures. Two groups of ground motions are employed in performing time history analyses, in which short duration (SD) and long duration (LD) characteristics are considered. The advanced power reactor 1400 (APR1400) NPP structures are used for developing finite element model, which is constructed using lumped-mass stick elements. A series of 486 lead rubber bearings (LRBs) are installed under the base mat of the NPP structures to reduce the seismic damage. Seismic responses of the base isolated NPP are quantified in terms of lateral displacements and hysteretic energy distributions of LRBs. Seismic fragility curves for damage states, which are defined based on the deformation of LRB, are developed. The results reveal that the average lateral displacements of LRBs under SD and LD motions are very similar. For PGA larger than 0.4g, the mean deformation of LRB for LD motions is higher than that for SD motions. The probability of damage of base isolated NPP structures under LD motions is reduced approximately 15% compared to that asubjected to SD earthquakes. This finding emphasizes that it is crucial to use both SD and LD ground motions in seismic evaluations of base isolated NPP structure

    Persistent organochlorines in environment of coastal area, a case study in Vietnam

    Get PDF
    Abstracts of 2nd UNU-ORI joint international workshop for marine environment第2回海洋環境国際ワークショップ講演要

    ĐIỆN CỰC NANO CẤU TRÚC 3D - PHÂN LỚP DỊ THỂ CỦA CdS/ZnO/Pt/WO3 TRONG VIỆC NÂNG CAO HIỆU SUẤT TÁCH NƯỚC QUANG ĐIỆN HÓA

    Get PDF
    In this work, we report the synthesis of the hierarchical structure of a CdS/ZnO/Pt/WO3 electrode for photoeletrochemical water splitting application. The photoanode was synthesized via the hydrothermal and atomic layer deposition methods. The morphological and structural properties of CdS/ZnO/Pt/WO3 nanoplates were carefully investigated by using SEM, TEM, and XRD techniques. The CdS/ZnO/Pt/WO3-based photoelectrode has a photocurrent density of 8,5 mA·cm-2 and a photoconversion efficiency of 7.9% at a supplied potential of –0,85 V in a 0.5 M Na2S solution. This photocurrent density is twice higher than that of the CdS/ZnO/FTO electrode. Due to built-in potential and efficiently collecting the photo-carriers generated from the ZnO/CdS heterojunction under illumination, the CdS/ZnO/Pt/WO3 electrode exhibits enhanced performance of the photoelectrochemical cell. This is a promising approach to the synthesis of heterojunction layers of semiconductor together with nanostructures for fabricating photoelectrodes of the photoelectrochemical cell to enhance hydrogen production efficiency.Trong bài báo này, chúng tôi nghiên cứu chế tạo điện cực có cấu trúc 3D phân lớp dị thể (cây – cành – nhánh) CdS/ZnO/Pt/WO3 ứng dụng cho tách nước quang điện hóa. Điện cực được tổng hợp bằng phương pháp thủy nhiệt và lắng đọng lớp nguyên tử. Hình thái học, cấu trúc tinh thể, và thành phần nguyên tố của điện cực này được nghiên cứu bằng kính hiển vi điện tử quét (FE–SEM), kính hiển vị điện tử truyền qua (HR–TEM) và nhiễu xạ tia X (XRD). Nghiên cứu tính chất quang điện hóa của cấu trúc CdS/ZnO/Pt/WO3, chúng tôi thu được mật độ dòng quang điện là 8,5 mA·cm-2 và hiệu suất chuyển đổi năng lượng ánh sáng mặt trời thành năng lượng hydro 7,9 %% tại thế cung cấp –0,85 V trong dung dịch chất điện ly Na2S với nồng độ 0,5 mol/L. Cấu trúc 3D phân lớp này có mật độ dòng quang điện của điện cực cao hơn gấp hai lần so với các cấu trúc CdS/ZnO trên điện cực thủy tinh phủ oxit thiếc pha tạp bằng flo. Đây là một hướng tiếp cận rất hứa hẹn tổng hợp các cấu trúc nano phân lớp dị thể nhằm nâng cao hiệu quả sản xuất hydro

    Rifampicin resistant 'Mycobacterium tuberculosis' in Vietnam, 2020–2022

    Get PDF
    Objective: We conducted a descriptive analysis of multi-drug resistant tuberculosis (MDR-TB) in Vietnam’s two largest cities, Hanoi and Ho Chi Minh city. Methods: All patients with rifampicin resistant tuberculosis were recruited from Hanoi and surrounding provinces between 2020 and 2022. Additional patients were recruited from Ho Chi Minh city over the same time period. Demographic data were recorded from all patients, and samples collected, cultured, whole genome sequenced and analysed for drug resistance mutations. Genomic susceptibility predictions were made on the basis of the World Health Organization’s catalogue of mutations in Mycobacterium tuberculosis associated with drug resistance, version 2. Comparisons were made against phenotypic drug susceptibility test results where these were available. Multivariable logistic regression was used to assess risk factors for previous episodes of tuberculosis. Results: 233/265 sequenced isolates were of sufficient quality for analysis, 146 (63 %) from Ho Chi Minh City and 87 (37 %) from Hanoi. 198 (85 %) were lineage 2, 20 (9 %) were lineage 4, and 15 (6 %) were lineage 1. 17/211 (8 %) for whom HIV status was known were infected, and 109/214 (51 %) patients had had a previous episode of tuberculosis. The main risk factor for a previous episode was HIV infection (odds ratio 5.1 (95 % confidence interval 1.3–20.0); p = 0.021). Sensitivity for predicting first-line drug resistance from whole genome sequencing data was over 90 %, with the exception of pyrazinamide (85 %). For moxifloxacin and amikacin it was 50 % or less. Among rifampicin-resistant isolates, prevalence of resistance to each non-first-line drug was < 20 %. Conclusions: Drug resistance among most MDR-TB strains in Vietnam’s two largest cities is confined largely to first-line drugs. Living with HIV is the main risk factor among patients with MDR-TB for having had a previous episode of tuberculosis
    corecore