939 research outputs found
A Comparative Study on Spin-Orbit Torque Efficiencies from W/ferromagnetic and W/ferrimagnetic Heterostructures
It has been shown that W in its resistive form possesses the largest
spin-Hall ratio among all heavy transition metals, which makes it a good
candidate for generating efficient dampinglike spin-orbit torque (DL-SOT)
acting upon adjacent ferromagnetic or ferrimagnetic (FM) layer. Here we provide
a systematic study on the spin transport properties of W/FM magnetic
heterostructures with the FM layer being ferromagnetic
CoFeB or ferrimagnetic CoTb with
perpendicular magnetic anisotropy. The DL-SOT efficiency , which is
characterized by a current-induced hysteresis loop shift method, is found to be
correlated to the microstructure of W buffer layer in both
W/CoFeB and W/CoTb systems. Maximum values
of and are achieved when
the W layer is partially amorphous in the W/CoFeB and
W/CoTb heterostructures, respectively. Our results suggest that
the spin Hall effect from resistive phase of W can be utilized to effectively
control both ferromagnetic and ferrimagnetic layers through a DL-SOT mechanism
Inhibitory Effects of Resveratrol on PDGF-BB-Induced Retinal Pigment Epithelial Cell Migration via PDGFRΞ², PI3K/Akt and MAPK Pathways
Purpose: In diseases such as proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy, and age-related macular degeneration, retinal pigment epithelial (RPE) cells proliferate and migrate. Moreover, platelet-derived growth factor (PDGF) has been shown to enhance proliferation and migration of RPE cells in PVR. Even resveratrol can suppress the migration and adhesion of many cell types, its effects on RPE cell migration and adhesion remain unknown. In this study, we investigated the inhibitory effects of resveratrol on RPE cell migration induced by PDGF-BB, an isoform of PDGF, and adhesion to fibronectin, a major ECM component of PVR tissue. Methods: The migration of RPE cells was assessed by an electric cell-substrate impedance sensing migration assay and a Transwell migration assay. A cell viability assay was used to determine the viability of resveratrol treated-cells. The cell adhesion to fibronectin was examined by an adhesion assay. The interactions of resveratrol with PDGF-BB were analyzed by a dot binding assay. The PDGF-BB-induced signaling pathways were determined by western blotting and scratch wound healing assay. Results: Resveratrol inhibited PDGF-BB-induced RPE cell migration in a dose-dependent manner, but showed no effects on ARPE19 cell adhesion to fibronectin. The cell viability assay showed no cytotoxicity of resveratrol on RPE cells and the dot binding assay revealed no direct interactions of resveratrol with PDGF-BB. Inhibitory effects of resveratrol on PDGF-BB-induced platelet-derived growth factor receptor Ξ² (PDGFRΞ²) and tyrosine phosphorylation and the underlying pathways of PI3K/Akt, ERK and p38 activation were found; however, resveratrol and PDGF-BB showed no effects on PDGFRΞ± and JNK activation. Scratch wound healing assay demonstrated resveratrol and the specific inhibitors of PDGFR, PI3K, MEK or p38 suppressed PDGF-BB-induced cell migration. Conclusions: These results indicate that resveratrol is an effective inhibitor of PDGF-BB-induced RPE cell migration via PDGFRΞ², PI3K/Akt and MAPK pathways, but has no effects on the RPE cell adhesion to fibronectin
Recommended from our members
Lutein Protects against Methotrexate-Induced and Reactive Oxygen Species-Mediated Apoptotic Cell Injury of IEC-6 Cells
Purpose High-dose chemotherapy using methotrexate (MTX) frequently induces side effects such as mucositis that leads to intestinal damage and diarrhea. Several natural compounds have been demonstrated of their effectiveness in protecting intestinal epithelial cells from these adverse effects. In this paper, we investigated the protection mechanism of lutein against MTX-induced damage in IEC-6 cells originating from the rat jejunum crypt. Methods: The cell viability, induced-apoptosis, reactive oxygen species (ROS) generation, and mitochondrial membrane potential in IEC-6 cells under MTX treatment were examined in the presence or absence of lutein. Expression level of Bcl2, Bad and ROS scavenging enzymes (including SOD, catalase and Prdx1) were detected by quantitative RT-PCR. Results: The cell viability of IEC-6 cells exposed to MTX was decreased in a dose- and time-dependent manner. MTX induces mitochondrial membrane potential loss, ROS generation and caspase 3 activation in IEC-6 cells. The cytotoxicity of MTX was reduced in IEC-6 cells by the 24 h pre-treatment of lutein. We found that pre-treatment of lutein significantly reduces MTX-induced ROS and apoptosis. The expression of SOD was up-regulated by the pre-treatment of lutein in the MTX-treated IEC-6 cells. These results indicated that lutein can protect IEC-6 cells from the chemo-drugs induced damage through increasing ROS scavenging ability. Conclusion: The MTX-induced apoptosis of IEC-6 cells was shown to be repressed by the pre-treatment of lutein, which may represent a promising adjunct to conventional chemotherapy for preventing intestinal damages
Web Usage Mining to Extract Knowledge for Modelling Users of Taiwan Travel Recommendation Mobile APP
This work presents the design of a web mining system to understand the navigational behavior of passengers in developed Taiwan travel recommendation mobile app that provides four main functions including recommend by location , hot topic , nearby scenic spots information , my favorite and 2650 scenic spots. To understand passenger navigational patterns, log data from actual cases of app were collected and analysed by web mining system. This system analysed 58981 sessions of 1326 users for the month of June, 2014. Sequential profiles for passenger navigational patterns were captured by applying sequence-based representation schemes in association with Markov models and enhanced K-mean clustering algorithms for sequence behavior mining cluster patterns. The navigational cycle, time, function numbers, and the depth and extent (range) of app were statistically analysed. The analysis results can be used improved the passengers\u27 acceptance of app and help generate potential personalization recommendations for achieving an intelligent travel recommendation service
Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging
In order to achieve high-resolution deep-tissue imaging, multi-photon fluorescence microscopy and photoacoustic tomography had been proposed in the past two decades. However, combining the advantages of these two imaging systems to achieve optical-spatial resolution with an ultrasonic-penetration depth is still a field with challenges. In this paper, we investigate the detection of the two-photon photoacoustic ultrasound, and first demonstrate background-free two-photon photoacoustic imaging in a phantom sample. To generate the background-free two-photon photoacoustic signals, we used a high-repetition rate femtosecond laser to induce narrowband excitation. Combining a loss modulation technique, we successfully created a beating on the light intensity, which not only provides pure sinusoidal modulation, but also ensures the spectrum sensitivity and frequency selectivity. By using the lock-in detection, the power dependency experiment validates our methodology to frequency-select the source of the nonlinearity. This ensures our capability of measuring the background-free two-photon photoacoustic waves by detecting the 2nd order beating signal directly. Furthermore, by mixing the nanoparticles and fluorescence dyes as contrast agents, the two-photon photoacoustic signal was found to be enhanced and detected. In the end, we demonstrate subsurface two-photon photoacoustic bio-imaging based on the optical scanning mechanism inside phantom samples
Attention-based Learning for Sleep Apnea and Limb Movement Detection using Wi-Fi CSI Signals
Wi-Fi channel state information (CSI) has become a promising solution for
non-invasive breathing and body motion monitoring during sleep. Sleep disorders
of apnea and periodic limb movement disorder (PLMD) are often unconscious and
fatal. The existing researches detect abnormal sleep disorders in impractically
controlled environments. Moreover, it leads to compelling challenges to
classify complex macro- and micro-scales of sleep movements as well as
entangled similar waveforms of cases of apnea and PLMD. In this paper, we
propose the attention-based learning for sleep apnea and limb movement
detection (ALESAL) system that can jointly detect sleep apnea and PLMD under
different sleep postures across a variety of patients. ALESAL contains
antenna-pair and time attention mechanisms for mitigating the impact of modest
antenna pairs and emphasizing the duration of interest, respectively.
Performance results show that our proposed ALESAL system can achieve a weighted
F1-score of 84.33, outperforming the other existing non-attention based methods
of support vector machine and deep multilayer perceptron
Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions
The study evaluated the potential of nanoemulsions for the topical delivery of 5-aminolevulinic acid (ALA) and methyl ALA (mALA). The drugs were incorporated in oil-in-water (O/W) and water-in-oil (W/O) formulations obtained by using soybean oil or squalene as the oil phase. The droplet size, zeta potential, and environmental polarity of the nanocarriers were assessed as physicochemical properties. The O/W and W/O emulsions showed diameters of 216β256 and 18β125 nm, which, respectively, were within the range of submicron- and nano-sized dispersions. In vitro diffusion experiments using Franz-type cells and porcine skin were performed. Nude mice were used, and skin fluorescence derived from protoporphyrin IX was documented by confocal laser scanning microscopy (CLSM). The loading of ALA or mALA into the emulsions resulted in slower release across cellulose membranes. The release rate and skin flux of topical drug application were adjusted by changing the type of nanocarrier, the soybean oil O/W systems showing the highest skin permeation. This formulation increased ALA flux via porcine skin to 180 nmol/cm2/h, which was 2.6-fold that of the aqueous control. The CLSM results showed that soybean oil systems promoted mALA permeation to deeper layers of the skin from βΌ100 ΞΌm to βΌ140 ΞΌm, which would be beneficial for treating subepidermal and subcutaneous lesions. Drug permeation from W/O systems did not surpass that from the aqueous solution. An in vivo dermal irritation test indicated that the emulsions were safe for topical administration of ALA and mALA
- β¦