894 research outputs found

    A Comparative Study on Spin-Orbit Torque Efficiencies from W/ferromagnetic and W/ferrimagnetic Heterostructures

    Full text link
    It has been shown that W in its resistive form possesses the largest spin-Hall ratio among all heavy transition metals, which makes it a good candidate for generating efficient dampinglike spin-orbit torque (DL-SOT) acting upon adjacent ferromagnetic or ferrimagnetic (FM) layer. Here we provide a systematic study on the spin transport properties of W/FM magnetic heterostructures with the FM layer being ferromagnetic Co20_{20}Fe60_{60}B20_{20} or ferrimagnetic Co63_{63}Tb37_{37} with perpendicular magnetic anisotropy. The DL-SOT efficiency ∣ξDL∣|\xi_{DL}|, which is characterized by a current-induced hysteresis loop shift method, is found to be correlated to the microstructure of W buffer layer in both W/Co20_{20}Fe60_{60}B20_{20} and W/Co63_{63}Tb37_{37} systems. Maximum values of ∣ξDLβˆ£β‰ˆ0.144|\xi_{DL}|\approx 0.144 and ∣ξDLβˆ£β‰ˆ0.116|\xi_{DL}|\approx 0.116 are achieved when the W layer is partially amorphous in the W/Co20_{20}Fe60_{60}B20_{20} and W/Co63_{63}Tb37_{37} heterostructures, respectively. Our results suggest that the spin Hall effect from resistive phase of W can be utilized to effectively control both ferromagnetic and ferrimagnetic layers through a DL-SOT mechanism

    Inhibitory Effects of Resveratrol on PDGF-BB-Induced Retinal Pigment Epithelial Cell Migration via PDGFRΞ², PI3K/Akt and MAPK Pathways

    Get PDF
    Purpose: In diseases such as proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy, and age-related macular degeneration, retinal pigment epithelial (RPE) cells proliferate and migrate. Moreover, platelet-derived growth factor (PDGF) has been shown to enhance proliferation and migration of RPE cells in PVR. Even resveratrol can suppress the migration and adhesion of many cell types, its effects on RPE cell migration and adhesion remain unknown. In this study, we investigated the inhibitory effects of resveratrol on RPE cell migration induced by PDGF-BB, an isoform of PDGF, and adhesion to fibronectin, a major ECM component of PVR tissue. Methods: The migration of RPE cells was assessed by an electric cell-substrate impedance sensing migration assay and a Transwell migration assay. A cell viability assay was used to determine the viability of resveratrol treated-cells. The cell adhesion to fibronectin was examined by an adhesion assay. The interactions of resveratrol with PDGF-BB were analyzed by a dot binding assay. The PDGF-BB-induced signaling pathways were determined by western blotting and scratch wound healing assay. Results: Resveratrol inhibited PDGF-BB-induced RPE cell migration in a dose-dependent manner, but showed no effects on ARPE19 cell adhesion to fibronectin. The cell viability assay showed no cytotoxicity of resveratrol on RPE cells and the dot binding assay revealed no direct interactions of resveratrol with PDGF-BB. Inhibitory effects of resveratrol on PDGF-BB-induced platelet-derived growth factor receptor Ξ² (PDGFRΞ²) and tyrosine phosphorylation and the underlying pathways of PI3K/Akt, ERK and p38 activation were found; however, resveratrol and PDGF-BB showed no effects on PDGFRΞ± and JNK activation. Scratch wound healing assay demonstrated resveratrol and the specific inhibitors of PDGFR, PI3K, MEK or p38 suppressed PDGF-BB-induced cell migration. Conclusions: These results indicate that resveratrol is an effective inhibitor of PDGF-BB-induced RPE cell migration via PDGFRΞ², PI3K/Akt and MAPK pathways, but has no effects on the RPE cell adhesion to fibronectin

    Web Usage Mining to Extract Knowledge for Modelling Users of Taiwan Travel Recommendation Mobile APP

    Get PDF
    This work presents the design of a web mining system to understand the navigational behavior of passengers in developed Taiwan travel recommendation mobile app that provides four main functions including recommend by location , hot topic , nearby scenic spots information , my favorite and 2650 scenic spots. To understand passenger navigational patterns, log data from actual cases of app were collected and analysed by web mining system. This system analysed 58981 sessions of 1326 users for the month of June, 2014. Sequential profiles for passenger navigational patterns were captured by applying sequence-based representation schemes in association with Markov models and enhanced K-mean clustering algorithms for sequence behavior mining cluster patterns. The navigational cycle, time, function numbers, and the depth and extent (range) of app were statistically analysed. The analysis results can be used improved the passengers\u27 acceptance of app and help generate potential personalization recommendations for achieving an intelligent travel recommendation service

    Nonlinear photoacoustic microscopy via a loss modulation technique: from detection to imaging

    Get PDF
    In order to achieve high-resolution deep-tissue imaging, multi-photon fluorescence microscopy and photoacoustic tomography had been proposed in the past two decades. However, combining the advantages of these two imaging systems to achieve optical-spatial resolution with an ultrasonic-penetration depth is still a field with challenges. In this paper, we investigate the detection of the two-photon photoacoustic ultrasound, and first demonstrate background-free two-photon photoacoustic imaging in a phantom sample. To generate the background-free two-photon photoacoustic signals, we used a high-repetition rate femtosecond laser to induce narrowband excitation. Combining a loss modulation technique, we successfully created a beating on the light intensity, which not only provides pure sinusoidal modulation, but also ensures the spectrum sensitivity and frequency selectivity. By using the lock-in detection, the power dependency experiment validates our methodology to frequency-select the source of the nonlinearity. This ensures our capability of measuring the background-free two-photon photoacoustic waves by detecting the 2nd order beating signal directly. Furthermore, by mixing the nanoparticles and fluorescence dyes as contrast agents, the two-photon photoacoustic signal was found to be enhanced and detected. In the end, we demonstrate subsurface two-photon photoacoustic bio-imaging based on the optical scanning mechanism inside phantom samples

    Attention-based Learning for Sleep Apnea and Limb Movement Detection using Wi-Fi CSI Signals

    Full text link
    Wi-Fi channel state information (CSI) has become a promising solution for non-invasive breathing and body motion monitoring during sleep. Sleep disorders of apnea and periodic limb movement disorder (PLMD) are often unconscious and fatal. The existing researches detect abnormal sleep disorders in impractically controlled environments. Moreover, it leads to compelling challenges to classify complex macro- and micro-scales of sleep movements as well as entangled similar waveforms of cases of apnea and PLMD. In this paper, we propose the attention-based learning for sleep apnea and limb movement detection (ALESAL) system that can jointly detect sleep apnea and PLMD under different sleep postures across a variety of patients. ALESAL contains antenna-pair and time attention mechanisms for mitigating the impact of modest antenna pairs and emphasizing the duration of interest, respectively. Performance results show that our proposed ALESAL system can achieve a weighted F1-score of 84.33, outperforming the other existing non-attention based methods of support vector machine and deep multilayer perceptron

    Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions

    Get PDF
    The study evaluated the potential of nanoemulsions for the topical delivery of 5-aminolevulinic acid (ALA) and methyl ALA (mALA). The drugs were incorporated in oil-in-water (O/W) and water-in-oil (W/O) formulations obtained by using soybean oil or squalene as the oil phase. The droplet size, zeta potential, and environmental polarity of the nanocarriers were assessed as physicochemical properties. The O/W and W/O emulsions showed diameters of 216–256 and 18–125 nm, which, respectively, were within the range of submicron- and nano-sized dispersions. In vitro diffusion experiments using Franz-type cells and porcine skin were performed. Nude mice were used, and skin fluorescence derived from protoporphyrin IX was documented by confocal laser scanning microscopy (CLSM). The loading of ALA or mALA into the emulsions resulted in slower release across cellulose membranes. The release rate and skin flux of topical drug application were adjusted by changing the type of nanocarrier, the soybean oil O/W systems showing the highest skin permeation. This formulation increased ALA flux via porcine skin to 180 nmol/cm2/h, which was 2.6-fold that of the aqueous control. The CLSM results showed that soybean oil systems promoted mALA permeation to deeper layers of the skin from ∼100 ΞΌm to ∼140 ΞΌm, which would be beneficial for treating subepidermal and subcutaneous lesions. Drug permeation from W/O systems did not surpass that from the aqueous solution. An in vivo dermal irritation test indicated that the emulsions were safe for topical administration of ALA and mALA
    • …
    corecore