20 research outputs found

    Alkali Uranyl Borates: Bond Length, Equatorial Coordination and 5f States

    No full text
    Three uranyl borates, UO2B2O4, LiUO2BO3 and NaUO2BO3, have been prepared by solid state syntheses. The influence of the crystallographic structure on the splitting of the empty 5f and 6d states have been probed using High Energy Resolved Fluorescence Detected X-ray Absorption Spectroscopy (HERFD-XAS) at the uranium M4-edge and L3-edge respectively. We demonstrate that the 5f splitting is increased by the decrease of the uranyl U-Oax distance, which in turn correlates with an increased bond covalency. This is correlated to the equatorial coordination change of the uranium. The role of the alkalis as charge compensating the axial oxygen of the uranyl is discussed

    1s2p RIXS calculations for 3d transition metal ions in octahedral symmetry

    No full text
    We present a series of 1s2p resonant inelastic X-ray scattering (RIXS) calculations for 3d transition metal ions in octahedral symmetry covering each ground state between 3d0 and 3d9. The calculations are performed in octahedral (Oh) symmetry using the crystal field multiplet theory. We discuss the crystal field effects and the selection rules with respect to the 1s2p RIXS pre-edge and compare their final state energies with the corresponding 2p X-ray absorption spectrum (XAS). The calculations provide a detailed understanding of 1s2p RIXS and serve as a basis for the future analysis of experimental spectra and also as a starting point for calculations that add additional channels including the nonlocal peaks

    Oxygen K-edge X-ray Absorption Spectra

    Get PDF
    We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems

    The representation of skin colour in medieval stained glasses: The role of manganese

    No full text
    International audienceThe present study concerns a corpus of 17 glass pieces representing character heads, originating from 11 major cathedrals and churches from North Western France and which constitute the masterpiece of stained glass windows. Skin complexion ranges from colourless to flesh-tone and purple. These glasses have been investigated using non-destructive and non-invasive techniques. Particle Induced X-ray Emission and Particle Induced Gamma Emission analyses at AGLAE show that these glass pieces show potassic plant ash glass compositions, typical to 12th −15th centuries. The compositional variability of the major glass components remains limited, similar to that found for single monuments, despite the diversity of geographic origins. The Mn and Ba concentrations follow a different trend in flesh-coloured or purple glasses and in colourless glasses, suggesting that the sources of Ba and Mn in these two kinds of glasses originated from different raw materials. Purple and flesh tone glasses contain more manganese than colourless glasses with an almost similar iron content. Synchrotron X-ray absorption near-edge structure spectroscopy (XANES) and portable UV–visible-NIR optical absorption spectroscopy indicate that glass colour varies with results from Fe2+, Fe3+, Mn2+ and Mn3+. The thickness of the glasses, about 3 mm, has been measured using ultrasound techniques. Its dispersion is similar in the various coloured glasses. This parameter mostly influences the colour saturation but not the hue. Obtaining flesh-coloured or purple glasses requires some control of the oxidation state of manganese during glass making. Divalent manganese is largely prevalent and the colour change from flesh-tone to purple hues is driven by small variations in the Mn3+ content. As these variations are not related to the Fe/Mn ratio, the resulting glass colour is difficult to predict on the only basis of glass composition. Due to the low kinetics for obtaining a redox equilibrium state between furnace atmosphere and the silicate melt, using Mn4+- and Mn3+-oxide minerals made it possible to favour oxidized melts, provided the glasses be taken out of the oven before redox equilibrium be reached: the shorter the melting time, the more oxidized will be resulting glass. This shows that medieval glassmakers were able to overcome the challenge of making glasses under highly oxidizing conditions to retaining enough oxidized manganese to favour flesh-tone and purple colours in wood-fuelled furnaces

    Oxygen K-edge X-ray Absorption Spectra

    No full text
    We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems

    Direct Observation of Cr3+ 3d States in Ruby : Toward Experimental Mechanistic Evidence of Metal Chemistry

    No full text
    The role of transition metals in chemical reactions is often derived from probing the metal 3d states. However, the relation between metal site geometry and 3d electronic states, arising from multielectronic effects, makes the spectral data interpretation and modeling of these optical excited states a challenge. Here we show, using the well-known case of red ruby, that unique insights into the density of transition metal 3d excited states can be gained with 2p3d resonant inelastic X-ray scattering (RIXS). We compare the experimental determination of the 3d excited states of Cr3+ impurities in Al2O3 with 190 meV resolution 2p3d RIXS to optical absorption spectroscopy and to simulations. Using the crystal field multiplet theory, we calculate jointly for the first time the Cr3+ multielectronic states, RIXS, and optical spectra based on a unique set of parameters. We demonstrate that (i) anisotropic 3d multielectronic interactions causes different scaling of Slater integrals, and (ii) a previously not observed doublet excited state exists around 3.35 eV. These results allow to discuss the influence of interferences in the RIXS intermediate state, of core-hole lifetime broadenings, and of selection rules on the RIXS intensities. Finally, our results demonstrate that using an intermediate excitation energy between L3 and L2 edges allows measurement of the density of 3d excited states as a fingerprint of the metal local structure. This opens up a new direction to pump-before-destroy investigations of transition metal complex structures and reaction mechanisms

    Influence of Sintering Conditions on the Structure and Redox Speciation of Homogeneous (U,Ce)O2+δ Ceramics: A Synchrotron Study

    No full text
    International audienceAlthough uranium–cerium dioxides are frequently used as a surrogate material for (U,Pu)O2−δ nuclear fuels, there is currently no reliable data regarding the oxygen stoichiometry and redox speciation of the cations in such samples. In order to fill this gap, this manuscript details a synchrotron study of highly homogeneous (U,Ce)O2±δ sintered samples prepared by a wet-chemistry route. HERFD-XANES spectroscopy led to determining accurately the O/M ratios (with M = U + Ce). Under a reducing atmosphere (pO2 ≈ 6 × 10–29 atm at 650 °C), the oxides were found to be close to O/M = 2.00, while the O/M ratio varied with the sintering conditions under argon (pO2 ≈ 3 × 10–6 atm at 650 °C). They globally appeared to be hyperstoichiometric (i.e., O/M > 2.00) with the departure from the dioxide stoichiometry decreasing with both the cerium content in the sample and the sintering temperature. Nevertheless, such a deviation from the ideal O/M = 2.00 ratio was found to generate only moderate structural disorder from EXAFS data at the U-L3 edge as all the samples retained the fluorite-type structure of the UO2 and CeO2 parent compounds. The determination of accurate lattice parameters owing to S-PXRD measurements led to complementing the data reported in the literature by various authors. These data were consistent with an empirical relation linking the unit cell parameter, the chemical composition, and the O/M stoichiometry, showing that the latter can be evaluated simply within a ± 0.02 uncertaint

    Thirteenth-century stained glass windows of the Sainte-Chapelle in Paris: an insight into medieval glazing work practices

    No full text
    International audienceThe restoration of the four northern windows of the 13th century Sainte-Chapelle in Paris from 2011 to 2014 has offered a unique opportunity to investigate the chemical composition and color of medieval glasses. This impressive corpus, covering a total surface of 660 m2, was created in a record time of a few years. The glasses from ten selected panels were analyzed using non-destructive and non-invasive techniques, with a specific consideration for the color of the glasses. Ion beam analyses performed at the New AGLAE facility enabled revealing that all ancient glasses are “potash” type glasses made from plant ashes, likely beech, in agreement with previous results on off-site panels. The multivariate analysis of major and minor elements demonstrates the presence of compositional clusters with a small variability suggesting the identification of bundles of glasses. The coloration of the glasses was measured by optical absorption spectroscopy, using a mobile spectrophotometer over the entire UV–visible-NIR energy range. The color palette is made of six colors assigned to typical medieval recipes. The chromophores of the different glasses are identified by combining the chemical composition, optical absorption spectroscopy and colorimetry. Colorless, yellow and purple glasses arise from the subtle redox equilibrium between manganese and iron. Their reduced usage shows their uncertain production. Blue glasses are colored by Co2+ using saffre from the contemporary German mines, green glasses are colored by Cu2+ and Fe3+ using high concentrations of copper and red glasses are striated glass colored by metallic copper nano-particles. Glass matrix and chromophores form compositional clusters, which are spread among the panels of the four windows suggesting that the glazing of these four windows was run simultaneously by the same atelier using the same supply of glass
    corecore