122 research outputs found

    Utilization of [15N]glutamate by cultured astrocytes

    Full text link

    Plant-made polio type 3 stabilized VLPsโ€”a candidate synthetic polio vaccine

    Get PDF
    Poliovirus (PV) is the causative agent of poliomyelitis, a crippling human disease known since antiquity. PV occurs in two distinct antigenic forms, D and C, of which only the D form elicits a robust neutralizing response. Developing a synthetically produced stabilized viruslike particle (sVLP)-based vaccine with D antigenicity, without the drawbacks of current vaccines, will be a major step towards the final eradication of poliovirus. Such a sVLP would retain the native antigenic conformation and the repetitive structure of the original virus particle, but lack infectious genomic material. In this study, we report the production of synthetically stabilized PV VLPs in plants. Mice carrying the gene for the human PV receptor are protected from wild-type PV when immunized with the plant-made PV sVLPs. Structural analysis of the stabilized mutant at 3.6 ร… resolution by cryo-electron microscopy and single particle reconstruction reveals a structure almost indistinguishable from wild-type PV3

    Purification and Characterization of Enterovirus 71 Viral Particles Produced from Vero Cells Grown in a Serum-Free Microcarrier Bioreactor System

    Get PDF
    [[abstract]]Background: Enterovirus 71 (EV71) infections manifest most commonly as a childhood exanthema known as hand-foot-and-mouth disease (HFMD) and can cause neurological disease during acute infection. Principal Finding: In this study, we describe the production, purification and characterization of EV71 virus produced from Vero cells grown in a five-liter serum-free bioreactor system containing 5 g/L Cytodex 1 microcarrier. The viral titer was >106 TCID50/mL by 6 days post infection when a MOI of 10?5 was used at the initial infection. Two EV71 virus fractions were separated and detected when the harvested EV71 virus concentrate was purified by sucrose gradient zonal ultracentrifugation. The EV71 viral particles detected in the 24โ€“28% sucrose fractions had an icosahedral structure 30โ€“31 nm in diameter and had low viral infectivity and RNA content. Three major viral proteins (VP0, VP1 and VP3) were observed by SDS-PAGE. The EV71 viral particles detected in the fractions containing 35โ€“38% sucrose were 33โ€“35 nm in size, had high viral infectivity and RNA content, and were composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. The two virus fractions were formalin-inactivated and induced high virus neutralizing antibody responses in mouse immunogenicity studies. Both mouse antisera recognized the immunodominant linear neutralization epitope of VP1 (residues 211โ€“225). Conclusion:These results provide important information for cell-based EV71 vaccine development, particularly for the preparation of working standards for viral antigen quantification

    Mechanisms of viral entry: sneaking in the front door

    Get PDF
    Recent developments in methods to study virus internalisation are providing clearer insights into mechanisms used by viruses to enter host cells. The use of dominant negative constructs, specific inhibitory drugs and RNAi to selectively prevent entry through particular pathways has provided evidence for the clathrin-mediated entry of hepatitis C virus (HCV) as well as the caveolar entry of Simian Virus 40. Moreover, the ability to image and track fluorescent-labelled virus particles in real-time has begun to challenge the classical plasma membrane entry mechanisms described for poliovirus and human immunodeficiency virus. This review will cover both well-documented entry mechanisms as well as more recent discoveries in the entry pathways of enveloped and non-enveloped viruses. This will include viruses which enter the cytosol directly at the plasma membrane and those which enter via endocytosis and traversal of internal membrane barrier(s). Recent developments in imaging and inhibition of entry pathways have provided insights into the ill-defined entry mechanism of HCV, bringing it to the forefront of viral entry research. Finally, as high-affinity receptors often define viral internalisation pathways, and tropism in vivo, host membrane proteins to which viral particles specifically bind will be discussed throughout

    Identification of Vesicular Stomatitis Virus Nucleoprotein in situ

    No full text
    • โ€ฆ
    corecore