6,560 research outputs found

    High Latitude Radio Emission in a Sample of Edge-On Spiral Galaxies

    Get PDF
    We have mapped 16 edge-on galaxies at 20 cm using the VLA. For 5 galaxies, we could form spectral index, energy and magnetic field maps. We find that all but one galaxy show evidence for non-thermal high latitude radio continuum emission, suggesting that cosmic ray halos are common in star forming galaxies. The high latitude emission is seen over a variety of spatial scales and in discrete and/or smooth features. In general, the discrete features emanate from the disk, but estimates of CR diffusion lengths suggest that diffusion alone is insufficient to transport the particles to the high latitudes seen (> 15 kpc in one case). Thus CRs likely diffuse through low density regions and/or are assisted by other mechanisms (e.g. winds). We searched for correlations between the prevalence of high latitude radio emission and a number of other properties, including the global SFR, supernova input rate per unit star forming, and do not find clear correlations with any of these properties.Comment: 40 pages of text, 3 figures, 6 tables, and an appendix of 21 jpeg figures (which is a radio continuum catalogue of 17 galaxies). to appear in A. J. (around January 1999

    A correction procedure for the errors in single-crystal intensities due to the inhomogeneity of the primary X-ray beam

    Get PDF
    Graphite monochromators are known to give rise to non-homogeneous primary X-ray beams. When intensities of single crystals are measured the effective cross section of a non-spherical crystal in the X-ray beam depends on its orientation in the beam. Therefore, systematic errors in the measured integrated intensities are introduced by the inhomogeneity of the incoming beam. A correction for these errors can be made, knowing the intensity profile of the primary beam and the dimensions and orientation of the crystal in the beam. The correction can conveniently be applied with the absorption correction. Examples of the corrections are given for crystals with rational boundary planes. It is shown that the intensity of an X-ray reflection as a function of the rotation about the scattering vector ( rotation) can be calculated with fair accuracy. In some cases (large elongated crystals in an inhomogeneous beam) correction for absorption only may give results which are worse than those with no correction at all

    The First Supernovae: Source Density And Observability Of Pair Instability Supernovae

    Get PDF
    Theoretical models predict that some of the first stars ended their lives as extremely energetic Pair Instability Supernovae (PISNe). With energies approaching 10(53) erg, these supernovae are expected to be within the detection limits of the upcoming James Webb Space Telescope (JWST) allowing observational constraints to be placed on the properties of the first stars. We estimate the source density of PISNe using a semi-analytic Press-Schecter based approach informed by cosmological simulations, with an upper limit of similar to 0.2 PISNe visible per JWST field of view at any given time. We find that the main obstacle to observing PISNe is their scarcity rather than their faintness. Given this we suggest a mosaic style search strategy for detecting PISNe from the first stars.Astronom

    Instant Two-Body Equation in Breit Frame

    Get PDF
    A quasipotential formalism for elastic scattering from relativistic bound states is based on applying an instant constraint to both initial and final states in the Breit frame. This formalism is advantageous for the analysis of electromagnetic interactions because current conservation and four momentum conservation are realized within a three-dimensional formalism. Wave functions are required in a frame where the total momentum is nonzero, which means that the usual partial wave analysis is inapplicable. In this work, the three-dimensional equation is solved numerically, taking into account the relevant symmetries. A dynamical boost of the interaction also is needed for the instant formalism, which in general requires that the boosted interaction be defined as the solution of a four-dimensional equation. For the case of a scalar separable interaction, this equation is solved and the Lorentz invariance of the three-dimensional formulation using the boosted interaction is verified. For more realistic interactions, a simple approximation is used to characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors

    Reducing Seed Harvest Losses

    Get PDF

    Tidally Triggered Star Formation in Close Pairs of Galaxies: Major and Minor Interactions

    Full text link
    We study star formation in a sample of 345 galaxies in 167 pairs and compact groups drawn from the original CfA2 Redshift Survey and from a follow-up search for companions. We construct our sample with attention to including pairs with luminosity contrast |\Delta m_R| >= 2. These 57 galaxies with |\Delta m_R| >= 2 provide a set of nearby representative cases of minor interactions, a central feature of the hierarchical galaxy formation model. Here we report the redshifts and positions of the 345 galaxies in our sample, and of 136 galaxies in apparent pairs that are superpositions. In the pairs sample as a whole, there are strong correlations between the equivalent width of the H\alpha emission line and the projected spatial and the line-of-sight velocity separation of the pair. For pairs of small luminosity contrast, |\Delta m_R| < 2, the member galaxies show a correlation between the equivalent width of H\alpha and the projected spatial separation of the pair. However, for pairs with large luminosity contrast, |\Delta m_R| >= 2, we detect no correlation between the equivalent width of H\alpha and the projected spatial separation. The relative luminosity of the companion galaxy is more important in a gravitational tidal interaction than the intrinsic luminosity of the galaxy. Central star formation across the entire pairs sample depends strongly on the luminosity ratio, |\Delta m_R|, a reasonable proxy for the mass ratio of the pair; pairs composed of similarly luminous galaxies produce the strongest bursts of star formation. Pairs with |\Delta m_R| >= 2 rarely have EW(H\alpha) >~ 70 Ang.Comment: Minor revisions following journal proof

    Properties of bow-shock sources at the Galactic center

    Full text link
    There are an enigmatic population of massive stars around the Galactic Center (GC) that were formed some Ma ago. A fraction of these stars has been found to orbit the supermassive black hole, SgrA*, in a projected clockwise disk, which suggests that they were formed in a formerly existing dense disk around SgrA*. We focus on the extended, near-infrared (NIR) sources IRS1W, IRS5, IRS10W, and IRS21 that have been suggested to be young, massive stars that form bow-shocks through their interaction with the ISM. Their nature has impeded accurate determination of their orbital parameters. We aim at establishing their nature and kinematics to test whether they form part of the clockwise disk. We performed NIR multi-wavelength imaging using adaptive optics (AO) and sparse aperture masking (SAM). We introduce a new method for self-calibration of the SAM PSF in dense stellar fields. The emission mechanism, morphology and kinematics of the targets were examined via 3D bow-shock models. We confirm previous findings that IRS21, IRS1W, and IRS5 are bow-shocks created by the interaction between mass-losing stars and the interstellar gas. The nature of IRS10W remains unclear. Our modeling shows that the bow-shock-emission is caused by thermal emission while the scattering of stellar light does not play any significant role. IRS 1W appears to be a bow-shock produced by an anisotropic stellar wind or by locally inhomogeneous ISM density. Our best-fit models provide an estimate of the local proper motion of the ISM in the NA in agreement with the published models. Assuming that all of the sources are tied to SgrA*, their orbital planes were obtained via a Monte-Carlo simulation. Our orbital analysis suggests that they are not part of any of the clockwise disk. We thus add more evidence to recent findings that a large part of the massive stars show apparently random orbital orientations.Comment: accepted for publication by A&A, 17 pages, 11 figures, 1 appendi
    • …
    corecore