5 research outputs found

    Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries

    Get PDF
    Gardia intestinalis, the aetiological agent of giardiasis, one of the most common intestinal diseases in both developing and developed countries, induces a loss of epithelial barrier function and functional injuries of the enterocyte by mechanisms that remain unknown. Three possible mechanisms have been proposed: (i) Giardia may directly alter the epithelial barrier after a close interaction between the trophozoite and polarized intestinal cells, (ii) intestinal functions may be altered by factors secreted by Giardia including an ‘enterotoxin’, proteinases and lectins, and (iii) based on mouse studies, a mechanism involving the intervention of activated T lymphocytes. We used fully differentiated cultured human intestinal Caco‐2/TC7 cells forming a monolayer and expressing several polarized functions of enterocytes of small intestine to investigate the mechanisms by which G. intestinalis induces structural and functional alterations in the host intestinal epithelium. We first report that adhesion of G. intestinalis at the brush border of enterocyte‐like cells involves the lipid raft membrane microdomains of the trophozoite. We report an adhesion‐dependent disorganization of the apical F‐actin cytoskeleton that, in turn, results in a dramatic loss of distribution of functional brush border‐associated proteins, including sucrase‐isomaltase (SI), dipeptidylpeptidase IV (DPP IV) and fructose transporter, GLUT5, and a decrease in sucrose enzyme activity in G. intestinalis ‐infected enterocyte‐like cells. We observed that the G. intestinalis trophozoite promotes an adhesion‐dependent decrease in transepithelial electrical resistance (TER) accompanied by a rearrangement of functional tight junction (TJ)‐associated occludin, and delocalization of claudin‐1. Finally, we found that whereas the occludin rearrangement induced by G. intestinalis was related to apical F‐actin disorganization, the delocalization of claudin‐1 was not.Fil: Humen, Martin Andres. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Perez, Pablo Fernando. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Liévin Le Moal, Vanessa. Université Paris Sud; Francia. Institut National de la Santé et de la Recherche Médicale; Franci

    Probióticos contra patógenos intestinales: mecanismos relevantes y perspectivas

    Get PDF
    El tracto digestivo constituye un lugar importantísimo para la interacción con diversos microorganismos. En este contexto, se ponen en juego diversas relaciones que pueden traer aparejados efectos adversos o benéficos para el hospedador. A la capacidad de ciertos microorganismos de dar lugar a patologías, se oponen diferentes mecanismos de defensa entre los que la microbiota comensal se destaca especialmente. Es entonces razonable, suponer que la administración de microorganismos benéficos (probióticos) a través de intervenciones nutricionales, puede resultar una estrategia valiosa para la prevención y tratamiento de infecciones intestinales. En el presente capítulo, se describen sistemas en los que se ha demostrado la capacidad de ciertas cepas seleccionadas de microorganismos potencialmente probióticos sobre los factores de virulencia de patógenos intestinales relevantes en el contexto de la infección intestinal.Fil: Minnaard, Jessica. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales. Departamento de Ciencias Biológicas. Centro de Investigaciones de Fitopatología. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones de Fitopatología; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hugo, Ayelen Amelia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; ArgentinaFil: Humen, Martin Andres. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Trejo, Fernando Miguel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Racedo, Silvia María. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Rolny, Ivanna Sabrina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; ArgentinaFil: Perez, Pablo Fernando. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; Argentin

    Effect of Bacillus cereus Exocellular Factors on Human Intestinal Epithelial Cells

    Get PDF
    To gain insight on the biological effects of the exocellular factors produced by Bacillus cereus, culture filtrate supernatants of different strains were coincubated with differentiated Caco-2 cells. Exocellular factors were able to detach enterocyte-like cells from the substratum after 1 h of incubation. In addition, microvilli effacing and dramatic changes on the cellular surface of enterocytes were found after incubation periods as short as 20 min. Since cell detachment was not inhibited by fetal calf serum, thiol activated cholesterol-binding cytolysin, cereolysin O, does not seem to be involved. Also, translocation of phosphatidylserine from the inner to the outer leaflets of the plasma membrane was demonstrated by using fluorescein isothiocyanate (FITC)-Annexin V. In contrast to the high capability of detaching Caco-2 cells shown by all the strains under study, the mitochondrial dehydrogenase activity was lowered by culture filtrate supernatants in a strain-dependent manner. For strain M2, the decrease in dehydrogenase activity was already evident after 30 min of incubation. Production of biologically active factors depends on the growth phase, and maximal activity was found in late exponential-early stationary phases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of concentrated exocellular factors showed a very complex scenery supporting the multifactorial character of the biological activity of B. cereus.Fil: Minnaard, Jessica. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; ArgentinaFil: Humen, Martin Andres. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Perez, Pablo Fernando. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentin

    Immunobiotics and Immunity Against Parasites

    No full text
    Parasitism represents a “win-lose” situation in which one organism benefi ts from the relationship while the other member is harmed by it (Faust and Raes 2012). Actually, parasites could lead from undetectable or minor effects to debilitating or fatal diseases. In addition, it has been demonstrated that interaction with parasites could lead to dramatical modifi cation of the host’s phenotype (Goodman and Johnson 2011). A broad vision of parasites will include in this group both prokaryote and eukaryote organisms but in this chapter the term “parasite” refers to protozoan and metazoan organisms able to provoke disease in vertebrates. Parasites have evolved to exploit the host’s resources in a way that maximizes the likelihood of their continuity on Earth. Successful parasites preserve their host at least until transmission to another individual is accomplished. Should this step is not complete before host death the parasite will be committed to extinction. In this evolutionary frame, life cycles of several parasites reach high degrees of sophistication in order to guaranty permanence. Life cycle of many parasites includes passage or colonization of the digestive tract and the interaction with the host’s microbiota and factors that lead to the modifi cation of the balance between intestinal inhabitants may affect signifi cantly the infection by parasites. A hallmark in parasite life is the ability to respond to changes in the environment by phenotypic changes that allows the organisms to adapt to very variable conditions. This phenotypic plasticity constitutes a successful strategy for survival (Mideo and Reece 2012).Fil: Humen, Martin Andres. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Benyacoub, Jalili. Centre de Recherche Nestlé; SuizaFil: Minnaard, Jessica. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; ArgentinaFil: Brassart, Dominique. Centre de Recherche Nestlé; SuizaFil: Schiffrin, Eduardo J.. Centre de Recherche Nestlé; SuizaFil: Perez, Pablo Fernando. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentin

    Administration of kefir-fermented milk protects mice against Giardia intestinalis infection

    Get PDF
    Giardiasis, caused by the protozoan Giardia intestinalis, is one of the most common intestinal diseases worldwide and constitutes an important problem for the public health systems of various countries. Kefir is a probiotic drink obtained by fermenting milk with ‘kefir grains’, which consist mainly of bacteria and yeasts that coexist in a complex symbiotic association. In this work, we studied the ability of kefir to protect mice from G. intestinalis infection, and characterized the host immune response to this probiotic in the context of the intestinal infection. Six- to 8-week-old C75BL/6 mice were separated into four groups: controls, kefir mice (receiving 1 : 100 dilution of kefir in drinking water for 14 days), Giardia mice (infected orally with 4107 trophozoites of G. intestinalis at day 7) and Giardia–kefir mice (kefir-treated G. intestinalis-infected mice), and killed at 2 or 7 days post-infection. Kefir administration was able to significantly reduce the intensity of Giardia infection at 7 days post-infection. An increase in the percentage of CD4+ T cells at 2 days post-infection was observed in the Peyer’s patches (PP) of mice belonging to the Giardia group compared with the control and kefir groups, while the percentage of CD4+ T cells in PP in the Giardia–kefir group was similar to that of controls. At 2 days post-infection, a reduction in the percentage of B220-positive major histocompatibility complex class II medium cells in PP was observed in infected mice compared with the other groups. At 7 days post-infection, Giardiainfected mice showed a reduction in RcFce-positive cells compared with the control group, suggesting a downregulation of the inflammatory response. However, the percentages of RcFcepositive cells did not differ from controls in the kefir and Giardia–kefir groups. An increase in IgApositive cells was observed in the lamina propria of the kefir group compared with controls at 2 days post-infection. Interestingly, the diminished number of IgA-positive cells registered in the Giardia group at 7 days post-infection was restored by kefir feeding, although the increase in IgApositive cells was no longer observed in the kefir group at that time. No significant differences in CXCL10 expression were registered between groups, in concordance with the absence of inflammation in small-intestinal tissue. Interestingly, a slight reduction in CCL20 expression was observed in the Giardia group, suggesting that G. intestinalis might downregulate its expression as a way of evading the inflammatory immune response. On the other hand, a trend towards an increase in TNF-a expression was observed in the kefir group, while the Giardia–kefir group showed a significant increase in TNF-a expression. Moreover, kefir-receiving mice (kefir and Giardia–kefir groups) showed an increase in the expression of IFN-c, the most relevant Th1 cytokine, at 2 days post-infection. Our results demonstrate that feeding mice with kefir reduces G. intestinalis infection and promotes the activation of different mechanisms of humoral and cellular immunity that are downregulated by parasitic infection, thus contributing to protection.Fil: Correa, Mariana. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones en Criotecnología de Alimentos (i); ArgentinaFil: Golowczyc, Marina Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: de Antoni, Graciela L.. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones en Criotecnología de Alimentos (i); ArgentinaFil: Perez, Pablo Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Humen, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigaciones En Criotecnología de Alimentos (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Serradell, Maria de Los Angeles. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Microbiología General; Argentin
    corecore