638 research outputs found

    The effect of the interplanetary magnetic field on sidereal variations observed at medium depth underground detectors

    Get PDF
    It has been known for some years that the intensity variations in sidereal time observed by muon detectors at moderate underground depths are sensitive to the polarity of the interplanetary magnetic field (ipmf) near the Earth. There are differences in the response to these anisotropies as observed in the Norhtern and southern hemispheres. When fully understood, the nature of the anisotropy seems likely to provide information on the 3-dimensional structure of the heliomagnetosphere, its time variations, and its linking with the local interstellar field. The summation harmonic dials for the sidereal diurnal variation during 1958 to 1982 show that there is a strong dependence on whether the ipmf near the Earth is directed outwards from the Sun or inwards it

    Community detection with spiking neural networks for neuromorphic hardware

    Full text link
    We present results related to the performance of an algorithm for community detection which incorporates event-driven computation. We define a mapping which takes a graph G to a system of spiking neurons. Using a fully connected spiking neuron system, with both inhibitory and excitatory synaptic connections, the firing patterns of neurons within the same community can be distinguished from firing patterns of neurons in different communities. On a random graph with 128 vertices and known community structure we show that by using binary decoding and a Hamming-distance based metric, individual communities can be identified from spike train similarities. Using bipolar decoding and finite rate thresholding, we verify that inhibitory connections prevent the spread of spiking patterns.Comment: Conference paper presented at ORNL Neuromorphic Workshop 2017, 7 pages, 6 figure

    Long-term modulation of cosmic rays during solar cycle 21

    Get PDF
    A preliminary result concerning the rigidity dependence of the longer-term solar cycle modulation is reported. The long-term modulation, using monthly mean intensities and referred to November 1977 as a normalizing level, appear to be in accordance with the exponent gamma = 1, provided only Brisbane and Hobart data are used. Darwin data do not conform to this pattern except perhaps during the early years of the cycle until about the end of 1980, since when the Darwin long-term intensity has been largely steady, apart from Forbush-type decreases and the as yet unidentified vector from the observed SI vector. The true SI vector of galactic origin can be obtained. The resultant vector has the amplitude of 0.031% and the phase of 2.3h. The present result seems to be consistent with those so far reported

    Empirical model for the Earth's cosmic ray shadow at 400 KM: Prohibited cosmic ray access

    Get PDF
    The possibility to construct a unit sphere of access that describes the cosmic radiation allowed to an Earth-orbiting spacecraft is discussed. It is found that it is possible to model the occluded portion of the cosmic ray sphere of access as a circular projection with a diameter bounded by the satellite-Earth horizon. Maintaining tangency at the eastern edge of the spacecraft-Earth horizon, this optically occluded area is projected downward by an angle beta which is a function of the magnetic field inclination and cosmic ray arrival direction. This projected plane, corresponding to the forbidden area of cosmic ray access, is bounded by the spacecraft-Earth horizon in easterly directions, and is rotated around the vertical axis by an angle alpha from the eastern direction, where the angle alpha is a function of the offset dipole latitude of the spacecraft

    Energetic solar particle events

    Get PDF
    Studies of the arrival directions of energetic solar particles during ground level enhancements (CLE's) observed by neutron monitors have shown that, in general, in the first hour of the event most of the particles arrive with a distribution of pitch angles peaked about the garden hose field direction in the vicinity of Earth. During the first hour some of the particles arrive from the antisolar direction, while in later stages of the event the intensity becomes more nearly isotropic as a result of scattering of particles in interplanetary space. An attempt is made to determine the arrival directions of the particles during the early stages of the GLE of 16 February 1984 using the data currently available from high latitude neutron monitors near sea level where the cut off is essentially atmospheric (approx. LGV)

    Sidereal variations deep underground in Tasmania

    Get PDF
    Data from the deep underground vertically directed muon telescopes at Poatina, Tasmania, have been used since 1972 for a number of investigations, including the daily intensity variations, atmospheric influences, and checking for possible effects due to the interplanetary magnetic field. These telescopes have a total sensitive area of only 3 square meters, with the result that the counting rate is low (about 1680 events per hour) and the statistical errors on the results are rather large. Consequently, it was decided several years ago to construct larger detectors for this station. The first of these telescopes has been in operation for two complete years, and the results from it are presented. Results from the new, more stable equipment at Poatina appear to confirm the existence of a first harmonic in the daily variations in sidereal time reported earlier, and are consistent with small or non-existent first harmonics in solar and anti-sidereal time. All the second harmonics appear to be small, if not zero at these energies

    North-south asymmetry in activity on the Sun and cosmic ray density gradients

    Get PDF
    The marked N-S asymmetry in solar activity (with predominant activity in the Sun's Northern Hemisphere) during the 1960's could certainly account for a S-pointing cosmic ray gradient. It is also clear from the data that the response to this change in solar activity asymmetry, and the related change in the perpendicular cosmic ray density gradient, is different for cosmic ray telescopes in the Earth's Northern and Southern Hemispheres. Northern Hemisphere detectors see a S-pointing gradient in the 60's and a N-pointing gradient after 1971, while Southern Hemisphere telescopes see a S-pointing gradient both before and after the reversal

    Relativistic Proton Production During the 14 July 2000 Solar Event: The Case for Multiple Source Mechanisms

    Full text link
    Protons accelerated to relativistic energies by transient solar and interplanetary phenomena caused a ground-level cosmic ray enhancement on 14 July 2000, Bastille Day. Near-Earth spacecraft measured the proton flux directly and ground-based observatories measured the secondary responses to higher energy protons. We have modelled the arrival of these relativistic protons at Earth using a technique which deduces the spectrum, arrival direction and anisotropy of the high-energy protons that produce increased responses in neutron monitors. To investigate the acceleration processes involved we have employed theoretical shock and stochastic acceleration spectral forms in our fits to spacecraft and neutron monitor data. During the rising phase of the event (10:45 UT and 10:50 UT) we find that the spectrum between 140 MeV and 4 GeV is best fitted by a shock acceleration spectrum. In contrast, the spectrum at the peak (10:55 UT and 11:00 UT) and in the declining phase (11:40 UT) is best fitted with a stochastic acceleration spectrum. We propose that at least two acceleration processes were responsible for the production of relativistic protons during the Bastille Day solar event: (1) protons were accelerated to relativistic energies by a shock, presumably a coronal mass ejection (CME). (2) protons were also accelerated to relativistic energies by stochastic processes initiated by magnetohydrodynamic (MHD) turbulence.Comment: 38 pages, 9 figures, accepted for publication in the Astrophysical Journal, January, 200

    Atmospheric effects on the underground muon intensity

    Get PDF
    It has previously been reported that the barometric pressure coefficient observed for muons at Poatina (vertical absorber depth 357 hg/sq cm) appears to be appreciably higher than would be expected from atmospheric absorption alone. There is a possibility that the effect is due to an upper atmospheric temperature effect arising from an inverse correlation of surface pressure with stratospheric temperature. A new proportional telescope is discussed which has been operating at Poatina since about the beginning of 83 and which has a long term stability suitable for studying variations of atmospheric origin
    corecore