598 research outputs found

    Dynamical Response of Nanomechanical Oscillators in Immiscible Viscous Fluid for in vitro Biomolecular Recognition

    Full text link
    Dynamical response of nanomechanical cantilever structures immersed in a viscous fluid is important to in vitro single-molecule force spectroscopy, biomolecular recognition of disease-specific proteins, and the detection of microscopic dynamics of proteins. Here we study the stochastic response of biofunctionalized nanomechanical cantilevers beam in a viscous fluid. Using the fluctuation-dissipation theorem we derive an exact expression for the spectral density of the displacement and a linear approximation for the resonance frequency shift. We find that in a viscous solution the frequency shift of the nanoscale cantilever is determined by surface stress generated by biomolecular interaction with negligible contributions from mass loading.Comment: 4 pages, 2 figures, RevTex4. See http://nano.bu.edu/ for related paper

    Attitudes towards medication non-adherence in elderly kidney transplant patients: A Q methodology study

    Get PDF
    Background. Non-adherence to the post-transplant regime is a common problem in kidney transplant patients and may lead to rejection or even graft failure. This study investigated attitudes towards the post-transplant regime of immunosuppressive medication among the ever growing population of elderly kidney recipients.Methods. Q methodology was used to explore attitude profiles. Participants (> 65 years) were asked to rank-order opinion statements on issues associated with (non-)adherence. The rankings were subject to by-person factor analysis, and the resulting factors were interpreted and described as attitudes.Results. Twenty-six elderly renal transplant recipients participated in the study. All passed the Mini-Mental

    Defect structures in nematic liquid crystals around charged particles

    Full text link
    We numerically study the orientation deformations in nematic liquid crystals around charged particles. We set up a Ginzburg-Landau theory with inhomogeneous electric field. If the dielectric anisotropy varepsilon_1 is positive, Saturn ring defects are formed around the particles. For varepsilon_1<0, novel "ansa" defects appear, which are disclination lines with their ends on the particle surface. We find unique defect structures around two charged particles. To lower the free energy, oppositely charged particle pairs tend to be aligned in the parallel direction for varepsilon_1>0 and in the perpendicular plane for varepsilon_1<0 with respect to the background director . For identically charged pairs the preferred directions for varepsilon_1>0 and varepsilon_1<0 are exchanged. We also examie competition between the charge-induced anchoring and the short-range anchoring. If the short-range anchoring is sufficiently strong, it can be effective in the vicinity of the surface, while the director orientation is governed by the long-range electrostatic interaction far from the surface.Comment: 10 papes, 12 figures, to appear in European Physical Journal

    Modulation of the Inhibitory Receptor Leukocyte Ig-Like Receptor 1 on Human Natural Killer Cells

    Get PDF
    Leukocyte Ig-like receptor 1 (LIR-1) is an inhibitory Ig superfamily receptor with broad specificity for MHC-I expressed on leukocytes including natural killer (NK) and T cells. The extent of LIR-1 expression on NK cells is quite disparate between donors but the regulation of LIR-1 in NK cells is poorly understood. We examined expression profiles of LIR-1 on NK and T lymphocytes in 11 healthy donors over 1 year. Four of the 11 donors demonstrated substantial increases in LIR-1+ NK cells. High levels of LIR-1 expression were not correlated with exposure to human cytomegalovirus or the fraction of CD57+ NK cells in the donor. LIR-1 levels on ex vivo NK and CD56+ T cells were increased in vitro by short term exposure to IL-2 or IL-15 compared to control but not with various other cytokines tested. Sorted CD56bright NK cells also increased LIR-1 expression when cultured in IL-2. Maintenance of LIR-1 on longer term NK cells was also dependent on continuous stimulation by IL-15 or IL-2. While we could not detect increases in total LIR-1 mRNA in response to cytokine treatment by qPCR, we observed a shift in activity of LIR-1 promoter reporter constructs in the presence of IL-2 favoring the more translationally active transcript from the proximal promoter. Together these results show LIR-1 on NK cells is under the control of cytokines known to drive NK cell maturation and activation and suggest availability of such cytokines may alter the NK repertoire in vivo as we observed in several donors with fluctuating levels of LIR-1 on their NK cells

    Supermultiplexed optical imaging and barcoding with engineered polyynes

    Get PDF
    Optical multiplexing has a large impact in photonics, the life sciences and biomedicine. However, current technology is limited by a 'multiplexing ceiling' from existing optical materials. Here we engineered a class of polyyne-based materials for optical supermultiplexing. We achieved 20 distinct Raman frequencies, as 'Carbon rainbow', through rational engineering of conjugation length, bond-selective isotope doping and end-capping substitution of polyynes. With further probe functionalization, we demonstrated ten-color organelle imaging in individual living cells with high specificity, sensitivity and photostability. Moreover, we realized optical data storage and identification by combinatorial barcoding, yielding to our knowledge the largest number of distinct spectral barcodes to date. Therefore, these polyynes hold great promise in live-cell imaging and sorting as well as in high-throughput diagnostics and screening

    Modification of the nanostructure of lignocellulose cell walls via a non-enzymatic lignocellulose deconstruction system in brown rot wood-decay fungi

    Get PDF
    Abstract Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a “pretreatment” used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability

    Aggressive fibromatosis of the head and neck: a new classification based on a literature review over 40 years (1968-2008)

    Full text link
    BACKGROUND: Fibromatosis is an aggressive fibrous tumor of unknown etiology that is, in some cases, lethal. Until now, there has been no particular classification for the head and neck. Therefore, the aim of the present study was to review the current literature in order to propose a new classification for future studies. METHODS: An evidence-based literature review was conducted from the last 40 years regarding aggressive fibromatosis in the head and neck. Studies that summarized patients' data without including individual data were excluded. RESULTS: Between 1968 and 2008, 179 cases with aggressive fibromatosis of the head and neck were published. The male to female ratio was 91 to 82 with a mean age of 16.87 years, and 57.32% of the described cases that involved the head and neck were found in patients under 11 years. The most common localization was the mandible, followed by the neck. All together, 143 patients were followed up, and in 43 (30.07%), a recurrence was seen. CONCLUSION: No clear prognostic factors for recurrence (age, sex, or localization) were observed. A new classification with regard to hormone receptors and bone involvement could improve the understanding of risk factors and thereby assist in future studies

    A novel diffuse gastric cancer susceptibility variant in E-cadherin (CDH1) intron 2: A case control study in an Italian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inherited genetic factors such as E-cadherin (<it>CDH1</it>) promoter variants are believed to influence the risk towards sporadic diffuse gastric cancer (DGC). Recently, a new regulatory region essential for <it>CDH1 </it>transcription has been identified in <it>CDH1 </it>intron 2.</p> <p>Methods</p> <p>We genotyped all known polymorphisms located within conserved sequences of <it>CDH1 </it>intron 2 (rs10673765, rs9932686, rs1125557, rs9282650, rs9931853) in an Italian population consisting of 134 DGC cases and 100 healthy controls (55 patient relatives and 45 unrelated, matched individuals). The influence of individual variants on DGC risk was assessed using χ<sup>2</sup>-tests and logistic regression. The relative contribution of alleles was estimated by haplotype analysis.</p> <p>Results</p> <p>We observed a significant (p < 0.0004) association of the <it>CDH1 </it>163+37235G>A variant (rs1125557) with DGC risk. Odds ratios were 4.55 (95%CI = 2.09–9.93) and 1.38 (95%CI = 0.75–2.55) for AA and GA carriers, respectively. When adjusted for age, sex, smoking status, alcohol intake and <it>H. pylori </it>infection, the risk estimates remained largely significant for AA carriers. Haplotype analysis suggested the 163+37235A-allele contributes to disease risk independently of the other variants studied.</p> <p>Conclusion</p> <p>The <it>CDH1 </it>163+37235G>A polymorphism may represent a novel susceptibility variant for sporadic DGC if confirmed in other populations. Considering the broad expression of E-cadherin in epithelia, this exploratory study encourages further evaluation of the 163+37235A-allele as a susceptibility variant in other carcinomas.</p

    Antibody-induced erythrophagocyte reprogramming of Kupffer cells prevents anti-CD40 cancer immunotherapy-associated liver toxicity

    Full text link
    BackgroundAgonistic anti-CD40 monoclonal antibodies (mAbs) have emerged as promising immunotherapeutic compounds with impressive antitumor effects in mouse models. However, preclinical and clinical studies faced dose-limiting toxicities mediated by necroinflammatory liver disease. An effective prophylactic treatment for liver immune-related adverse events that does not suppress specific antitumor immunity remains to be found.MethodsWe used different mouse models and time-resolved single-cell RNA-sequencing to characterize the pathogenesis of anti-CD40 mAb induced liver toxicity. Subsequently, we developed an antibody-based treatment protocol to selectively target red blood cells (RBCs) for erythrophagocytosis in the liver, inducing an anti-inflammatory liver macrophage reprogramming.ResultsWe discovered that CD40 signaling in Clec4f+^{+}Kupffer cells is the non-redundant trigger of anti-CD40 mAb-induced liver toxicity. Taking advantage of the highly specific functionality of liver macrophages to clear antibody-tagged RBCs from the blood, we hypothesized that controlled erythrophagocytosis and the linked anti-inflammatory signaling by the endogenous metabolite heme could be exploited to reprogram liver macrophages selectively. Repeated low-dose administration of a recombinant murine Ter119 antibody directed RBCs for selective phagocytosis in the liver and skewed the phenotype of liver macrophages into a Hmoxhigh^{high}/Marcohigh^{high}/MHCIIlow^{low}anti-inflammatory phenotype. This unique mode of action prevented necroinflammatory liver disease following high-dose administration of anti-CD40 mAbs. In contrast, extrahepatic inflammation, antigen-specific immunity, and antitumor activity remained unaffected in Ter119 treated animals.ConclusionsOur study offers a targeted approach to uncouple CD40-augmented antitumor immunity in peripheral tissues from harmful inflammatoxicity in the liver
    corecore