3,803 research outputs found

    Multi-detection and polarisation contrast in scannning near-field optical microscopy in reflection

    Get PDF
    A new type of NSOM probe has been developed, with a design based o­n the probes used in Atomic Force Microscopy. The probe consists of a cantilever with at its end a conical tip. This tip has been metal-coated to provide an aperture. With the cantilevered probe, the problem of breaking of the tip due to high normal forces is solved. In operation, the tip is scanned in contact with the sample while regulating the force between the tip and the sample with a beam deflection technique, which allows to simultaneously make an optical and a topographical image of the sample. The probes are made using micromechanical techniques, which allows batch fabrication of the probes. Testing of the probes is done in a transmission NSOM set-up in which the sample is scanned while the tip and the optical path are kept fixed. Using an opaque sample with submicron holes, the new probes have been tested, resulting an optical image with a simultaneously measured topographical image

    Detection of fluorescence in situ hybridization on human metaphase chromosomes by near-field scanning optical microscopy

    Get PDF
    Fluorescence in situ hybridization signals o­n human metaphase chromosomes are detected by a near-field scanning optical microscope. This makes it possible to localize and identify several fluorescently labeled genomic DNA fragments o­n a single chromosome with a resolution superior to traditional fluorescence microscopy. Several nucleic acid probes have been used. The hybridization signals are well resolved in the near- field fluorescence images, and the exact location of the probes can be correlated to the topography as it is afforded by the shear-force feedback

    Distribution and kinematics of atomic and molecular gas inside the Solar circle

    Get PDF
    The detailed distribution and kinematics of the atomic and the CO-bright molecular hydrogen in the disc of the Milky Way inside the Solar circle are derived under the assumptions of axisymmetry and pure circular motions. We divide the Galactic disc into a series of rings, and assume that the gas in each ring is described by four parameters: its rotation velocity, velocity dispersion, midplane density and its scale height. We fit these parameters to the Galactic HI and CO (J=1-0) data by producing artificial HI and CO line-profiles and comparing them with the observations. Our approach allows us to fit all parameters to the data simultaneously without assuming a-priori a radial profile for one of the parameters. We present the distribution and kinematics of the HI and H2 in both the approaching (QIV) and the receding (QI) regions of the Galaxy. Our best-fit models reproduces remarkably well the observed HI and CO longitude-velocity diagrams up to a few degrees of distance from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show very similar kinematics. The rotation curves traced by the HI and H2 follow closely each other, flattening beyond R=6.5 kpc. Both the HI and the H2 surface densities show a) a deep depression at 0.5<R<2.5 kpc, analogous to that shown by some nearby barred galaxies, b) local overdensities that can be interpreted in terms of spiral arms or ring-like features in the disk. The HI (H2) properties are fairly constant in the region outside the depression, with typical velocity dispersion of 8.9+/-1.1 (4.4+/-1.2) km/s, density of 0.43+/-0.11 (0.42+/-0.22) cm-3 and HWHM scale height of 202+/-28 (64+/-12) pc. We also show that the HI opacity in the LAB data can be accounted for by using an `effective' spin temperature of about 150 K: assuming an optically thin regime leads to underestimate the HI mass by about 30%.Comment: 23 pages, 24 figures. Accepted by A&

    Many-body wave scattering by small bodies

    Full text link
    Scattering problem by several bodies, small in comparison with the wavelength, is reduced to linear algebraic systems of equations, in contrast to the usual reduction to some integral equations

    Spectral mode-beat phenomena in a cylindrical microcavity

    Get PDF
    Detailed spectral analysis of photon scanning tunneling microscope images has been carried out. The analysis of spectral mode-beat phenomena leads to an accurate determination of mode profiles and gives evidence of counterpropagating mode

    IC 4200: a gas-rich early-type galaxy formed via a major merger

    Full text link
    We present the result of radio and optical observations of the S0 galaxy IC 4200. We find that the galaxy hosts 8.5 billion solar masses of HI rotating on a ~90 deg warped disk extended out to 60 kpc from the centre of the galaxy. Optical spectroscopy reveals a simple-stellar-population-equivalent age of 1.5 Gyr in the centre of the galaxy and V- and R-band images show stellar shells. Ionised gas is observed within the stellar body and is kinematically decoupled from the stars and characterised by LINER-like line ratios.We interpret these observational results as evidence for a major merger origin of IC 4200, and date the merger back to 1-3 Gyr ago.Comment: Accepted for publication in Astronomy & Astrophysics; 18 pages, 13 figures; the tables of Appendix C can be downloaded at http://www.astro.rug.nl/~pserra/IC420

    Optical Albedo Theory of Strongly-Irradiated Giant Planets: The Case of HD 209458b

    Full text link
    We calculate a new suite of albedo models for close-in extrasolar giant planets and compare with the recent stringent upper limit for HD 209458b of Rowe et al. using MOST. We find that all models without scattering clouds are consistent with this optical limit. We explore the dependence on wavelength and waveband, metallicity, the degree of heat redistribution, and the possible presence of thermal inversions and find a rich diversity of behaviors. Measurements of transiting extrasolar giant planets (EGPs) at short wavelengths by MOST, Kepler, and CoRoT, as well as by proposed dedicated multi-band missions, can complement measurements in the near- and mid-IR using {\it Spitzer} and JWST. Collectively, such measurements can help determine metallicity, compositions, atmospheric temperatures, and the cause of thermal inversions (when they arise) for EGPs with a broad range of radii, masses, degrees of stellar insolation, and ages. With this paper, we reappraise and highlight the diagnostic potential of albedo measurements of hot EGPs shortward of \sim1.3 μ\mum.Comment: 6 pages, 1 table, 1 color figure; accepted to the Astrophysical Journa
    corecore