7 research outputs found

    DNGR1-mediated deletion of A20/Tnfaip3 in dendritic cells alters T and B-cell homeostasis and promotes autoimmune liver pathology

    Get PDF
    Dendritic cells (DCs) are central regulators of tolerance versus immunity. The outcome depends amongst others on DC subset and activation status. Whereas CD11b+ type 2 conventional DCs (cDC2s) initiate proinflammatory helper T (Th)-cell responses, CD103+ cDC1s are crucial for regulatory T-cell (Treg) induction and CD8+ T-cell activation. DC activation is controlled by the transcription factor NF-κB. Ablation of A20/Tnfaip3, a critical regulator of NF-κB activation, in DCs leads to constitutive DC activation and development of systemic autoimmunity. We hypothesized that the activation status of cDCs controls the development of autoimmunity. To target cDCs, DNGR1(Clec9a)-cre-mediated excision of A20/Tnfaip3 was used through generation of Tnfaip3fl/flxClec9a+/cre (Tnfaip3DNGR1−KO) mice. Immune cell activation was evaluated at 31-weeks of age. We found that DNGR1-cre-mediated deletion of A20/Tnfaip3 resulted in liver pathology characterized by inflammatory infiltrates adjacent to the portal triads. Both cDC subsets as well as monocyte-derived DCs (moDCs) in Tnfaip3DNGR1−KO livers harbored an activated phenotype. Specifically, the costimulatory molecule CD40 in liver cDCs and moDCs was regulated by A20/Tnfaip3 expression. Livers from Tnfaip3DNGR1−KO mice had augmented prop

    House dust mite-driven neutrophilic airway inflammation in mice with TNFAIP3-deficient myeloid cells is IL-17-independent

    Get PDF
    Background: Asthma is a heterogeneous disease of the airways that involves several types of granulocytic inflammation. Recently, we have shown that the activation status of myeloid cells regulated by TNFAIP3/A20 is a crucial determinant of eosinophilic or neutrophilic airway inflammation. However, whether neutrophilic inflammation observed in this model is dependent on IL-17 remains unknown. Objective: In this study, we investigated whether IL-17RA-signalling is essential for eosinophilic or neutrophilic inflammation in house dust mite (HDM)-driven airway inflammation. Methods: Tnfaip3fl/flxLyz2+/cre (Tnfaip3LysM-KO) mice were crossed to Il17raKO mice, generating Tnfaip3LysMIl17raKO mice and subjected to an HDM-driven airway inflammation model. Results: Both eosinophilic and neutrophilic inflammation observed in HDM-exposed WT and Tnfaip3LysM-KO mice respectively were unaltered in the absence of IL-17RA. Production of IL-5, IL-13 and IFN-γ by CD4+ T cells was similar between WT, Tnfaip3LysM-KO and Il17raKO mice, whereas mucus-producing cells in Tnfaip3LysM-KOIl17raKO mice were reduced compared to controls. Strikingly, spontaneous accumulation of pulmonary Th1, Th17 and γδ-17 T cells was observed in Tnfaip3LysM-KOIl17raKO mice, but not in the other genotypes. Th17 cell-associated cytokines such as GM-CSF and IL-22 were increased in the lungs of HDM-exposed Tnfaip3LysM-KOIl17raKO mice, compared to IL-17RA-sufficient controls. Moreover, neutrophilic chemo-attractants CXCL1, CXCL2, CXCL12 and Th17-promoting cytokines IL-1β and IL-6 were unaltered between Tnfaip3LysM-KO and Tnfaip3LysM-KOIl17raKO mice. Conclusion and Clinical Relevance: These findings show that neutrophilic airway inflammation induced by activated TNFAIP3/A20-deficient myeloid cells can develop in the absence of IL-17RA-signalling. Neutrophilic inflammation is likely maintained by similar quantities of pro-inflammatory cytokines IL-1β and IL-6 that can, independently of IL-17-signalling, induce the expression of neutrophil chemo-attractants

    Tnfaip3 expression in pulmonary conventional type 1 Langerin-expressing dendritic cells regulates T helper 2-mediated airway inflammation in mice

    Get PDF
    Background: Conventional type 1 dendritic cells (cDC1s) control anti-viral and anti-tumor immunity by inducing antigen-specific cytotoxic CD8+ T-cell responses. Controversy exists whether cDC1s also control CD4+ T helper 2 (Th2) cell responses, since suppressive and activating roles have been reported. DC activation status, controlled by the transcription factor NF-κB, might determine the precise outcome of Th-cell differentiation upon encounter with cDC1s. To investigate the role of activated cDC1s in Th2-driven immune responses, pulmonary cDC1s were activated by targeted deletion of A20/Tnfaip3, a negative regulator of NF-κB signaling. Methods: To target pulmonary cDC1s, Cd207 (Langerin)-mediated excision of A20/Tnfaip3 was used, generating Tnfaip3fl/flxCd207+/cre (Tnfaip3Lg-KO) mice. Mice were exposed to house dust mite (HDM) to provoke Th2-mediated immune responses. Results: Mice harboring Tnfaip3-deficient cDC1s did not develop Th2-driven eosinophilic airway inflammation upon HDM exposure, but rather showed elevated numbers of IFNγ-expressing CD8+ T cells. In addition, Tnfaip3Lg-KO mice harbored increased numbers of IL-12–expressing cDC1s and elevated PD-L1 expression in all pulmonary DC subsets. Blocking either IL-12 or IFNγ in Tnfaip3Lg-KO mice restored Th2 responses, whereas administration of recombinant IFNγ during HDM sensitization in C57Bl/6 mice blocked Th2 development. Conclusions: These findings indicate that the activation status of cDC1s, shown by their specific expression of co-inhibitory molecules and cytokines, critically contributes to the development of Th2 cell–mediated disorders, most likely by influencing IFNγ production in CD8+ T cells

    Enhanced Bruton's tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis

    Get PDF
    RATIONALE: Idiopathic Pulmonary Fibrosis (IPF) is thought to be triggered by repeated alveolar epithelial cell injury. Current evidence suggests that aberrant immune activation may contribute. However, the role of B-cell activation remains unclear. We determined the phenotype and activation status of B-cell subsets and evaluated the contribution of activated B-cells to the development of lung fibrosis both in humans and in mice. METHODS: B-cells in blood, mediastinal lymph node, and lung single-cell suspensions of IPF patients and healthy controls (HC) were characterized using 14-color flow cytometry. Mice were exposed to bleomycin to provoke pulmonary fibrosis. RESULTS: More IgA+ memory B-cells and plasmablasts were found in blood (n = 27) and lungs (n = 11) of IPF patients compared to HC (n = 21) and control lungs (n = 9). IPF patients had higher levels of autoreactive IgA in plasma, which correlated with an enhanced decline of forced vital capacity (p = 0.002, r = - 0.50). Bruton's tyrosine kinase expression was higher in circulating IPF B-cells compared to HC, indicating enhanced B-cell activation. Bleomycin-exposed mice had increased pulmonary IgA+ germinal center and plasma cell proportions compared to control mice. The degree of lung fibrosis correlated with pulmonary germinal center B-cell proportions (p = 0.010, r = 0.88). CONCLUSION: Our study demonstrates that IPF patients have more circulating activated B-cells and autoreactive IgA, which correlate with disease progression. These B-cell alterations were also observed in the widely used mouse model of experimental pulmonary fibrosis. Autoreactive IgA could be useful as a biomarker for disease progression in IPF

    Aberrant B cell receptor signaling in naïve B cells from patients with idiopathic pulmonary fibrosis

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a chronic and ultimately fatal disease in which an impaired healing response to recurrent micro-injuries is thought to lead to fibrosis. Recent findings hint at a role for B cells and autoimmunity in IPF pathogenesis. We previously reported tha

    Plasma markers in pulmonary hypertension subgroups correlate with patient survival

    No full text
    Background: Recent studies have provided evidence for an important contribution of the immune system in the pathophysiology of pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). In this report, we investigated whether the inflammatory profile of pulmonary hypertension patients changes over time and correlates with patient WHO subgroups or survival. Methods: 50 PAH patients (16 idiopathic (I)PAH, 24 Connective Tissue Disease (CTD)-PAH and 10 Congenital Heart Disease (CHD)-PAH), 37 CTEPH patients and 18 healthy controls (HCs) were included in the study. Plasma inflammatory markers at baseline and after 1-year follow-up were measured using ELISAs. Subsequently, correlations with hemodynamic parameters and survival were explored and data sets were subjected to unbiased multivariate analyses. Results: At diagnosis, we found that plasma levels of interleukin-6 (IL-6) and the chemokines (C-X3-C) motif legend CXCL9 and CXCL13 in CTD-PAH patients were significantly increased, compared with HCs. In idiopathic PAH patients the levels of tumor growth factor-β (TGFβ), IL-10 and CXCL9 were elevated, compared with HCs. The increased CXCL9 and IL-8 concentrations in CETPH patients correlated significantly with decreased survival, suggesting that CXCL9 and IL-8 may be prognostic markers. After one year of treatment, IL-10, CXCL13 and TGFβ levels changed significantly in the PAH subgroups and CTEPH patients. Unbiased multivariate analysis revealed clustering of PH patients based on inflammatory mediators and clinical parameters, but did not separate the WHO subgroups. Importantly, these multivariate analyses separated patients with &lt; 3 years and &gt; 3 years survival, in particular when inflammatory mediators were combined with clinical parameters. Discussion: Our study revealed elevated plasma levels of inflammatory mediators in different PAH subgroups and CTEPH at baseline and at 1-year follow-up, whereby CXCL9 and IL-8 may prove to be prognostic markers for CTEPH patients. While this study is exploratory and hypothesis generating, our data indicate an important role for IL-8 and CXCL9 in CHD and CTEPH patients considering the increased plasma levels and the observed correlation with survival. Conclusion: In conclusion, our studies identified an inflammatory signature that clustered PH patients into WHO classification-independent subgroups that correlated with patient survival.</p
    corecore