8 research outputs found

    Influence of Membrane CD25 Stability on T Lymphocyte Activity: Implications for Immunoregulation

    Get PDF
    CD25, a component of the IL-2 receptor, is important in T cell proliferation, activation induced cell death, as well as the actions of both regulatory (Treg) and effector (Teff) T cells. Recent genome wide association studies have implicated the CD25 locus as an important region for genetic susceptibility to a number of autoimmune disorders, with serum levels of soluble CD25 receptor (sCD25) serving as a potential phenotypic marker for this association. However, the functional impact of CD25 cleavage, as well as the influence of sCD25 on immunoregulatory activities, remain largely unknown and form the basis of this effort.The generation of sCD25 by Treg (CD4(+)CD25(+)) and Teff (CD4(+)CD25(-)) cells was examined during in vitro suppression assays, efforts that demonstrated constitutive and stable surface CD25 expression on Treg throughout the period of in vitro assessment. In contrast, Teff cells increased CD25 expression during the process of in vitro suppression, with supernatant sCD25 levels correlating to the amount of cellular proliferation. Interestingly, under serum-free conditions, Tregs partially lost their characteristic anergic and suppressive properties. sCD25 supplementation at physiological concentrations to serum free in vitro suppression assays reduced Teff proliferation without specifically influencing suppression. Indeed, sCD25 production within these cultures correlated with cell death.These results support the notion that sCD25 functions as both a surrogate marker of T cell activation as well as an indicator of subsequent cellular death. In addition, the role of CD25 in immunomodulation is likely dependent on the local inflammatory milieu, with molecules capable of modulating surface CD25 expression playing a key role in defining immune responsiveness

    The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFNÎł production by PBMC

    Get PDF
    AbstractType 1 Diabetes (T1D) is an autoimmune disorder characterized by aberrant T cell responses. Innate immune activation defects may facilitate a T helper 1 (Th1) phenotype. The cytokine IL-18 synergizes with IL-12 to induce IFNÎł production and Th1 differentiation. The IL-18R subunit (IL18RAP) SNP rs917997 has been linked to decreased IL18RAP gene expression. Prior reports link rs917997 allele A with protection from T1D, and conversely with susceptibility to Celiac disease. However, few studies have investigated the IL-18 pathway in T1D. In this study, we analyzed responsiveness to IL-18 in T1D, and the effect of rs917997 genotype on IL18RAP gene expression post-activation. Upon IL-12 and IL-18 treatment, peripheral blood mononuclear cells from subjects carrying susceptibility alleles at rs917997 produced higher levels of IFNÎł than those with protective genotypes. Additionally, the SNP modified IL18RAP surface protein expression by NK cells and gene expression in activated T cells. Taken together, these data suggest that the disease-associated rs917997 allele G permits hyperresponsiveness to IL-18, providing a novel target for therapeutic intervention in T1D

    Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes.

    Get PDF
    Low-dose antithymocyte globulin (ATG) plus pegylated granulocyte colony-stimulating factor (G-CSF) preserves β-cell function for at least 12 months in type 1 diabetes. Herein, we describe metabolic and immunological parameters 24 months following treatment. Patients with established type 1 diabetes (duration 4-24 months) were randomized to ATG and pegylated G-CSF (ATG+G-CSF) (N = 17) or placebo (N = 8). Primary outcomes included C-peptide area under the curve (AUC) following a mixed-meal tolerance test (MMTT) and flow cytometry. "Responders" (12-month C-peptide ≥ baseline), "super responders" (24-month C-peptide ≥ baseline), and "nonresponders" (12-month C-peptide < baseline) were evaluated for biomarkers of outcome. At 24 months, MMTT-stimulated AUC C-peptide was not significantly different in ATG+G-CSF (0.49 nmol/L/min) versus placebo (0.29 nmol/L/min). Subjects treated with ATG+G-CSF demonstrated reduced CD4+ T cells and CD4+/CD8+ T-cell ratio and increased CD16+CD56hi natural killer cells (NK), CD4+ effector memory T cells (Tem), CD4+PD-1+ central memory T cells (Tcm), Tcm PD-1 expression, and neutrophils. FOXP3+Helios+ regulatory T cells (Treg) were elevated in ATG+G-CSF subjects at 6, 12, and 18 but not 24 months. Immunophenotyping identified differential HLA-DR expression on monocytes and NK and altered CXCR3 and PD-1 expression on T-cell subsets. As such, a group of metabolic and immunological responders was identified. A phase II study of ATG+G-CSF in patients with new-onset type 1 diabetes is ongoing and may support ATG+G-CSF as a prevention strategy in high-risk subjects

    Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1 diabetes

    No full text
    BackgroundPrevious efforts to preserve β cell function in individuals with type 1 diabetes (T1D) have focused largely on the use of single immunomodulatory agents administered within 100 days of diagnosis. Based on human and preclinical studies, we hypothesized that a combination of low-dose anti-thymocyte globulin (ATG) and pegylated granulocyte CSF (G-CSF) would preserve β cell function in patients with established T1D (duration of T1D >4 months and <2 years).MethodsA randomized, single-blinded, placebo-controlled trial was performed on 25 subjects: 17 subjects received ATG (2.5 mg/kg intravenously) followed by pegylated G-CSF (6 mg subcutaneously every 2 weeks for 6 doses) and 8 subjects received placebo. The primary outcome was the 1-year change in AUC C-peptide following a 2-hour mixed-meal tolerance test (MMTT). At baseline, the age (mean ± SD) was 24.6 ± 10 years; mean BMI was 25.4 ± 5.2 kg/m²; mean A1c was 6.5% ± 1.1%; insulin use was 0.31 ± 0.22 units/kg/d; and length of diagnosis was 1 ± 0.5 years.ResultsCombination ATG/G-CSF treatment tended to preserve β cell function in patients with established T1D. The mean difference in MMTT-stimulated AUC C-peptide between treated and placebo subjects was 0.28 nmol/l/min (95% CI 0.001-0.552, P = 0.050). A1c was lower in ATG/G-CSF-treated subjects at the 6-month study visit. ATG/G-CSF therapy was associated with relative preservation of Tregs.ConclusionsPatients with established T1D may benefit from combination immunotherapy approaches to preserve β cell function. Further studies are needed to determine whether such approaches may prevent or delay the onset of the disease.Trial registrationClinicaltrials.gov NCT01106157.FundingThe Leona M. and Harry B. Helmsley Charitable Trust and Sanofi

    Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes

    No full text
    Low-dose antithymocyte globulin (ATG) plus pegylated granulocyte colony-stimulating factor (G-CSF) preserves β-cell function for at least 12 months in type 1 diabetes. Herein, we describe metabolic and immunological parameters 24 months following treatment. Patients with established type 1 diabetes (duration 4–24 months) were randomized to ATG and pegylated G-CSF (ATG+G-CSF) (N = 17) or placebo (N = 8). Primary outcomes included C-peptide area under the curve (AUC) following a mixed-meal tolerance test (MMTT) and flow cytometry. “Responders” (12-month C-peptide ≥ baseline), “super responders” (24-month C-peptide ≥ baseline), and “nonresponders” (12-month C-peptide < baseline) were evaluated for biomarkers of outcome. At 24 months, MMTT-stimulated AUC C-peptide was not significantly different in ATG+G-CSF (0.49 nmol/L/min) versus placebo (0.29 nmol/L/min). Subjects treated with ATG+G-CSF demonstrated reduced CD4(+) T cells and CD4(+)/CD8(+) T-cell ratio and increased CD16(+)CD56(hi) natural killer cells (NK), CD4(+) effector memory T cells (Tem), CD4(+)PD-1(+) central memory T cells (Tcm), Tcm PD-1 expression, and neutrophils. FOXP3(+)Helios(+) regulatory T cells (Treg) were elevated in ATG+G-CSF subjects at 6, 12, and 18 but not 24 months. Immunophenotyping identified differential HLA-DR expression on monocytes and NK and altered CXCR3 and PD-1 expression on T-cell subsets. As such, a group of metabolic and immunological responders was identified. A phase II study of ATG+G-CSF in patients with new-onset type 1 diabetes is ongoing and may support ATG+G-CSF as a prevention strategy in high-risk subjects

    Human Treg responses allow sustained recombinant adeno-associated virus-mediated transgene expression

    No full text
    Recombinant adeno-associated virus (rAAV) vectors have shown promise for the treatment of several diseases; however, immune-mediated elimination of transduced cells has been suggested to limit and account for a loss of efficacy. To determine whether rAAV vector expression can persist long term, we administered rAAV vectors expressing normal, M-type alpha-1 antitrypsin (M-AAT) to AAT-deficient subjects at various doses by multiple i.m. injections. M-specific AAT expression was observed in all subjects in a dose-dependent manner and was sustained for more than 1 year in the absence of immune suppression. Muscle biopsies at 1 year had sustained AAT expression and a reduction of inflammatory cells compared with 3 month biopsies. Deep sequencing of the TCR Vbeta region from muscle biopsies demonstrated a limited number of T cell clones that emerged at 3 months after vector administration and persisted for 1 year. In situ immunophenotyping revealed a substantial Treg population in muscle biopsy samples containing AAT-expressing myofibers. Approximately 10% of all T cells in muscle were natural Tregs, which were activated in response to AAV capsid. These results suggest that i.m. delivery of rAAV type 1-AAT (rAAV1-AAT) induces a T regulatory response that allows ongoing transgene expression and indicates that immunomodulatory treatments may not be necessary for rAAV-mediated gene therapy
    corecore