241 research outputs found

    Discovery of the Orbit of the Transient X ray Pulsar SAX J2103.5+4545

    Full text link
    Using X-ray data from the Rossi X-Ray Timing Explorer (RXTE), we carried out pulse timing analysis of the transient X-ray pulsar SAX J2103.5+4545. An outburst was detected by All Sky Monitor (ASM) October 25 1999 and reached a peak X-ray brightness of 27 mCrab October 28. Between November 19 and December 27, the RXTE/PCA carried out pointed observations which provided us with pulse arrival times. These yield an eccentric orbit (e= 0.4 \pm 0.2) with an orbital period of 12.68 \pm 0.25 days and light travel time across the projected semimajor axis of 72 \pm 6 sec. The pulse period was measured to be 358.62171 \pm 0.00088 s and the spin-up rate (2.50 \pm 0.15) \times 10^{-13} Hz s^{-1}. The ASM data for the February to September 1997 outburst in which BeppoSAX discovered SAX J2103.5+4545 (Hulleman, in't Zand and Heise 1998) are modulated at time scales close to the orbital period. Folded light curves of the 1997 ASM data and the 1999 PCA data are similar and show that the intensity increases at periastron passages.Comment: To appear in The Astrophysical Journal (Letters

    The Spin Period, Luminosity and Age Distributions of Anomalous X-Ray Pulsars

    Get PDF
    We consider the accretion model for anomalous X-ray pulsars proposed recently by Chatterjee, Hernquist and Narayan, in which the emission is powered by accretion from a fossil disk formed by the fallback of material from a supernova explosion. We demonstrate that this model is able to account for the spin period, luminosity and age distributions of the observed population of AXPs for reasonable and broad distributions of the free parameters of the model, namely, the surface magnetic field of the neutron star, the mass of its accretion disk and its initial spin period. In particular, this model is able statistically to account for the puzzlingly narrow observed spin distribution of the AXPs. We show also that if the establishment of fallback accretion disks around isolated neutron stars is a universal phenomenon, then a fairly large minority (∌20\sim 20%) of these objects become X-ray bright AXPs or X-ray faint systems spinning down by propeller action, while the rest become radio pulsars.Comment: 11 pages, 2 figures; accepted for publication in Ap

    Emission Spectra of Fallback Disks Around Young Neutron Stars

    Full text link
    The nature of the energy source powering anomalous X-ray pulsars is uncertain. Proposed scenarios involve either an ultramagnetized neutron star, or accretion onto a neutron star. We consider the accretion model proposed recently by Chatterjee, Hernquist & Narayan, in which a disk is fed by fallback material following a supernova. We compute the optical, infrared, and submillimeter emission expected from such a disk, including both viscous dissipation and reradiation of X-ray flux impinging on the disk from the pulsar. We find that it is possible with current instruments to put serious constraints on this and on other accretion models of AXPs. Fallback disks could also be found around isolated radio pulsars and we compute the corresponding spectra. We show that the excess emission in the R and I bands observed for the pulsar PSR 0656+14 is broadly consistent with emission from a disk.Comment: 12 pages, 1 table, 4 figures, submitted to Ap

    Imaging X-ray, Optical, and Infrared Observations of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    We report X-ray imaging, timing, and spectral studies of XTE J1810-197, a 5.54s pulsar discovered by Ibrahim et al. (2003) in recent RXTE observations. In a set of short exposures with the Chandra HRC camera we detect a strongly modulated signal (55+/-4% pulsed fraction) with the expected period located at (J2000) 18:09:51.08, -19:43:51.7, with a uncertainty radius of 0.6 arcsec (90% C.L.). Spectra obtained with XMM-Newton are well fitted by a two-component model that typically describes anomalous X-ray pulsars (AXPs), an absorbed blackbody plus power law with parameters kT = 0.67+/-0.01 keV, Gamma=3.7+/-0.2, N_H=(1.05+/-0.05)E22 cm^-2, and Fx(0.5-10 keV) = 3.98E-11 ergs/cm2/s. Alternatively, a 2T blackbody fit is just as acceptable. The location of CXOU J180951.1-194351 is consistent with a point source seen in archival Einstein, Rosat, & ASCA images, when its flux was nearly two orders-of-magnitude fainter, and from which no pulsations are found. The spectrum changed dramatically between the "quiescent" and "active" states, the former can be modeled as a softer blackbody. Using XMM timing data, we place an upper limit of 0.03 lt-s on any orbital motion in the period range 10m-8hr. Optical and infrared images obtained on the SMARTS 1.3m telescope at CTIO show no object in the Chandra error circle to limits V=22.5, I=21.3, J=18.9, & K=17.5. Together, these results argue that CXOU J180951.1-194351 is an isolated neutron star, one most similar to the transient AXP AX J1844.8-0256. Continuing study of XTE J1810-197 in various states of luminosity is important for understanding and possibly unifying a growing class of isolated, young neutron stars that are not powered by rotation.Comment: 12 pages, 7 figures, AAS LaTex, uses emulateapj5.sty. Updated to include additional archival data and a new HRC observation. To appear in The Astrophysical Journa

    Unfolded Protein Response Activation Reduces Secretion and Extracellular Aggregation of Amyloidogenic Immunoglobulin Light Chain

    Get PDF
    Light-chain amyloidosis (AL) is a degenerative disease characterized by the extracellular aggregation of a destabilized amyloidogenic Ig light chain (LC) secreted from a clonally expanded plasma cell. Current treatments for AL revolve around ablating the cancer plasma cell population using chemotherapy regimens. Unfortunately, this approach is limited to the ∌70% of patients who do not exhibit significant organ proteotoxicity and can tolerate chemotherapy. Thus, identifying new therapeutic strategies to alleviate LC organ proteotoxicity should allow AL patients with significant cardiac and/or renal involvement to subsequently tolerate established chemotherapy treatments. Using a small-molecule screening approach, the unfolded protein response (UPR) was identified as a cellular signaling pathway whose activation selectively attenuates secretion of amyloidogenic LC, while not affecting secretion of a nonamyloidogenic LC. Activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the absence of stress recapitulates the selective decrease in amyloidogenic LC secretion by remodeling the endoplasmic reticulum proteostasis network. Stress-independent activation of XBP1s, or especially ATF6, also attenuates extracellular aggregation of amyloidogenic LC into soluble aggregates. Collectively, our results show that stress-independent activation of these adaptive UPR transcription factors offers a therapeutic strategy to reduce proteotoxicity associated with LC aggregation

    HST Observations of SGR 0526-66: New Constraints on Accretion and Magnetar Models

    Get PDF
    Soft Gamma-ray Repeaters (SGRs) are among the most enigmatic sources known today. Exhibiting huge X- and Gamma-ray bursts and flares, as well as soft quiescent X-ray emission, their energy source remains a mystery. Just as mysterious are the Anomalous X-ray pulsars (AXPs), which share many of the same characteristics. Thanks to recent Chandra observations, SGR 0526-66, the first SGR, now appears to be a transition object bridging the two classes, and therefore observations of it have implications for both SGRs and AXPs. The two most popular current models for their persistent emission are accretion of a fossil disk or decay of an enormous (~10^15 G) magnetic field in a magnetar. We show how deep optical observations of SGR 0526-66, the only SGR with small enough optical extinction for meaningful observations, show no evidence of an optical counterpart. These observation place strong new constraints on both accretion disk and magnetar models, and suggest that the spectral energy distribution may peak in the hard-UV. Almost all accretion disks are excluded by the optical data, and a magnetar would require a ~10^15-10^16 G field.Comment: 23 pages, 5 figures. Accepted by Ap

    Disks irradiated by beamed radiation from compact objects

    Get PDF
    We examine the reprocessing of X-ray radiation from compact objects by accretion disks when the X-ray emission from the star is highly beamed. The reprocessed flux for various degrees of beaming and inclinations of the beam axis with respect to the disk is determined. We find that, in the case where the beam is produced by a non-relativistic object, the intensity of the emitted spectrum is highly suppressed if the beam is pointing away from the disk. However, for beams produced by compact objects, general relativistic effects cause only a small reduction in the reradiated flux even for very narrow beams oriented perpendicularly to the disk. This is especially relevant in constraining models for the anomalous X-ray pulsars, whose X-ray emission is highly beamed. We further discuss other factors that can influence the emission from disks around neutron stars.Comment: 11 pages with 4 figures, accepted to ApJ Letter

    Stability and Evolution of Supernova Fallback Disks

    Get PDF
    We show that thin accretion disks made of Carbon or Oxygen are subject to the same thermal ionization instability as Hydrogen and Helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 10^3 to 10^4 years), compact in size (a few 10^9 cm to 10^11 cm) and generally accreting at sub-Eddington rates (Mdot ~ a few 10^14 - 10^18 g/s). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly-born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets, at \~10^11 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because it can spread beyond the Roche limit before becoming neutral.[Abridged]Comment: 34 pages, 2 figures, accepted for publication in Ap

    A review of the anti-tumor potential of current therapeutics targeting the mitochondrial protease ClpP in H3K27-altered, diffuse midline glioma

    Get PDF
    Diffuse midline gliomas (DMGs) are devastating pediatric brain tumors recognized as the leading cause of cancer-related death in children. DMGs are high-grade gliomas (HGGs) diagnosed along the brain's midline. Euchromatin is the hallmark feature of DMG, caused by global hypomethylation of H3K27 either through point mutations in histone H3 genes (H3K27M), or by overexpression of the enhancer of zeste homolog inhibitory protein (EZHIP). In a clinical trial for adults with progressive HGGs, a 22-year-old patient with a thalamic H3K27-altered DMG, showed remarkable clinical and radiological responses to dordaviprone (ONC201). This response in a H3K27-altered HGG patient, coupled with the lack of response of patients harboring wildtype-H3 tumors, has increased the clinical interest in dordaviprone for the treatment of DMG. Additional reports of clinical benefit have emerged, but research defining mechanisms of action (MOA) fall behind dordaviprone's clinical use, with biomarkers of response unresolved. Here, we summarize dordaviprone's safety, interrogate its preclinical MOA- identifying the mitochondrial protease 'ClpP' as a biomarker of response, and discuss other ClpP-agonists, expanding the arsenal of potential weapons in the fight against DMG. Finally, we discuss combination strategies including ClpP-agonists, and its immunomodulatory effects suggestive of a role for the tumor microenvironment in DMG patients' response
    • 

    corecore