433 research outputs found
Super-Yang-Mills and M5-branes
We uplift 5-dimensional super-Yang-Mills theory to a 6-dimensional gauge
theory with the help of a space-like constant vector , whose norm
determines the Yang-Mills coupling constant. After the localization of
the 6D gauge theory acquires Lorentzian invariance as well as scale invariance.
We discuss KK states, instantons and the flux quantization. The 6D theory
admits extended solutions like 1/2 BPS `strings' and monopoles.Comment: 15 pages; minor changes, to appear in JHE
Heterotic type IIA duality with fluxes - towards the complete story
In this paper we study the heterotic type IIA duality when fluxes are turned
on. We show that many of the known fluxes are dual to each other and claim that
certain fluxes on the heterotic side require that the type IIA picture is
lifted to M or even F-theory compactifications with geometric fluxes.Comment: 31 pages, references adde
Sigma models with off-shell N=(4,4) supersymmetry and noncommuting complex structures
We describe the conditions for extra supersymmetry in N=(2,2) supersymmetric
nonlinear sigma models written in terms of semichiral superfields. We find that
some of these models have additional off-shell supersymmetry. The (4,4)
supersymmetry introduces geometrical structures on the target-space which are
conveniently described in terms of Yano f-structures and Magri-Morosi
concomitants. On-shell, we relate the new structures to the known
bi-hypercomplex structures.Comment: 20 pages; v2: significant corrections, clarifications, and
reorganization; v3: discussion of supersymmetry vs twisted supersymmetry
added, relevant signs corrected
Super Weyl invariance: BPS equations from heterotic worldsheets
It is well-known that the beta functions on a string worldsheet correspond to
the target space equations of motion, e.g. the Einstein equations. We show that
the BPS equations, i.e. the conditions of vanishing supersymmetry variations of
the space-time fermions, can be directly derived from the worldsheet. To this
end we consider the RNS-formulation of the heterotic string with (2,0)
supersymmetry, which describes a complex torsion target space that supports a
holomorphic vector bundle. After a detailed account of its quantization and
renormalization, we establish that the cancellation of the Weyl anomaly
combined with (2,0) finiteness implies the heterotic BPS conditions: At the one
loop level the geometry is required to be conformally balanced and the gauge
background has to satisfy the Hermitean Yang-Mills equations.Comment: 1+31 pages LaTeX, 5 figures; final version, discussion relation Weyl
invariance and (2,0) finiteness extended, typos correcte
Heterotic Sigma Models with N=2 Space-Time Supersymmetry
We study the non-linear sigma model realization of a heterotic vacuum with
N=2 space-time supersymmetry. We examine the requirements of (0,2) + (0,4)
world-sheet supersymmetry and show that a geometric vacuum must be described by
a principal two-torus bundle over a K3 manifold.Comment: 20 pages, uses xy-pic; v3: typos corrected, reference added,
discussion of constraints on Hermitian form modifie
Heterotic-Type II duality in the hypermultiplet sector
We revisit the duality between heterotic string theory compactified on K3 x
T^2 and type IIA compactified on a Calabi-Yau threefold X in the hypermultiplet
sector. We derive an explicit map between the field variables of the respective
moduli spaces at the level of the classical effective actions. We determine the
parametrization of the K3 moduli space consistent with the Ferrara-Sabharwal
form. From the expression of the holomorphic prepotential we are led to
conjecture that both X and its mirror must be K3 fibrations in order for the
type IIA theory to have an heterotic dual. We then focus on the region of the
moduli space where the metric is expressed in terms of a prepotential on both
sides of the duality. Applying the duality we derive the heterotic
hypermultiplet metric for a gauge bundle which is reduced to 24 point-like
instantons. This result is confirmed by using the duality between the heterotic
theory on T^3 and M-theory on K3. We finally study the hyper-Kaehler metric on
the moduli space of an SU(2) bundle on K3.Comment: 27 pages; references added, typos correcte
Self-duality of the D1-D5 near-horizon
We explore fermionic T-duality and self-duality in the geometry AdS3 x S3 x
T4 in type IIB supergravity. We explicitly construct the Killing spinors and
the fermionic T-duality isometries and show that the geometry is self-dual
under a combination of two bosonic AdS3 T-dualities, four fermionic T-dualities
and either two additional T-dualities along T4 or two T-dualities along S3. In
addition, we show that the presence of a B-field acts as an obstacle to
self-duality, a property attributable to S- duality and fermionic T-duality not
commuting. Finally, we argue that fermionic T-duality may be extended to CY2 =
K3, a setting where we cannot explicitly construct the Killing spinors.Comment: 24 pages, references added, changes made to reinforce the point that
S-duality and fermionic T-duality generically do not commute, version
accepted to JHE
More on the Nambu-Poisson M5-brane Theory: Scaling limit, background independence and an all order solution to the Seiberg-Witten map
We continue our investigation on the Nambu-Poisson description of M5-brane in
a large constant C-field background (NP M5-brane theory) constructed in
Refs.[1, 2]. In this paper, the low energy limit where the NP M5-brane theory
is applicable is clarified. The background independence of the NP M5-brane
theory is made manifest using the variables in the BLG model of multiple
M2-branes. An all order solution to the Seiberg-Witten map is also constructed.Comment: expanded explanations, minor corrections and typos correcte
D=7 / D=6 Heterotic Supergravity with Gauged R-Symmetry
We construct a family of chiral anomaly-free supergravity theories in D=6
starting from D=7 supergravity with a gauged noncompact R-symmetry, employing a
Horava-Witten bulk-plus-boundary construction. The gauged noncompact R-symmetry
yields a positive (de Sitter sign) D=6 scalar field potential. Classical
anomaly inflow which is needed to cancel boundary-field loop anomalies requires
careful consideration of the gravitational, gauge, mixed and local
supersymmetry anomalies. Coupling of boundary hypermultiplets requires care
with the Sp(1) gauge connection required to obtain quaternionic Kahler target
manifolds in D=6. This class of gauged R-symmetry models may be of use as
starting points for further compactifications to D=4 that take advantage of the
positive scalar potential, such as those proposed in the scenario of
supersymmetry in large extra dimensions.Comment: 43 pages, plain Latex; Clarification of discussion and references
adde
The Semi-Chiral Quotient, Hyperkahler Manifolds and T-duality
We study the construction of generalized Kahler manifolds, described purely
in terms of N=(2,2) semichiral superfields, by a quotient using the semichiral
vector multiplet. Despite the presence of a b-field in these models, we show
that the quotient of a hyperkahler manifold is hyperkahler, as in the usual
hyperkahler quotient. Thus, quotient manifolds with torsion cannot be
constructed by this method. Nonetheless, this method does give a new
description of hyperkahler manifolds in terms of two-dimensional N=(2,2) gauged
non-linear sigma models involving semichiral superfields and the semichiral
vector multiplet. We give two examples: Eguchi-Hanson and Taub-NUT. By
T-duality, this gives new gauged linear sigma models describing the T-dual of
Eguchi-Hanson and NS5-branes. We also clarify some aspects of T-duality
relating these models to N=(4,4) models for chiral/twisted-chiral fields and
comment briefly on more general quotients that can give rise to torsion and
give an example.Comment: 31 page
- …
