7,619 research outputs found

    The Signature Triality of Majorana-Weyl Spacetimes

    Get PDF
    Higher dimensional Majorana-Weyl spacetimes present space-time dualities which are induced by the Spin(8) triality automorphisms. Different signature versions of theories such as 10-dimensional SYM's, superstrings, five-branes, F-theory, are shown to be interconnected via the S_3 permutation group. Bilinear and trilinear invariants under space-time triality are introduced and their possible relevance in building models possessing a space-versus-time exchange symmetry is discussed. Moreover the Cartan's ``vector/chiral spinor/antichiral spinor" triality of SO(8) and SO(4,4) is analyzed in detail and explicit formulas are produced in a Majorana-Weyl basis. This paper is the extended version of hep-th/9907148.Comment: 28 pages, LaTex. Extended version of hep-th/990714

    Collective pinning of imperfect vortex lattices by material line defects in extreme type-II superconductors

    Full text link
    The critical current density shown by a superconductor at the extreme type-II limit is predicted to follow an inverse square-root power law with external magnetic field if the vortex lattice is weakly pinned by material line defects. It acquires an additional inverse dependence with thickness along the line direction once pinning of the interstitial vortex lines by material point defects is included. Moderate quantitative agreement with the critical current density shown by second-generation wires of high-temperature superconductors in kG magnetic fields is achieved at liquid-nitrogen temperature.Comment: 10 pages, 3 figures, 2 tables. To appear in Physical Review

    Superstring partition functions in the doubled formalism

    Full text link
    Computation of superstring partition function for the non-linear sigma model on the product of a two-torus and its dual within the scope of the doubled formalism is presented. We verify that it reproduces the partition functions of the toroidally compactified type--IIA and type--IIB theories for appropriate choices of the GSO projection.Comment: 15 page

    Toroidal Orientifolds in IIA with General NS-NS Fluxes

    Full text link
    Type IIA toroidal orientifolds offer a promising toolkit for model builders, especially when one includes not only the usual fluxes from NS-NS and R-R field strengths, but also fluxes that are T-dual to the NS-NS three-form flux. These new ingredients are known as metric fluxes and non-geometric fluxes, and can help stabilize moduli or can lead to other new features. In this paper we study two approaches to these constructions, by effective field theory or by toroidal fibers twisted over a toroidal base. Each approach leads us to important observations, in particular the presence of D-terms in the four-dimensional effective potential in some cases, and a more subtle treatment of the quantization of the general NS-NS fluxes. Though our methods are general, we illustrate each approach on the example of an orientifold of T^6/Z_4.Comment: 59 pages, references adde

    Option Pricing Formulas based on a non-Gaussian Stock Price Model

    Full text link
    Options are financial instruments that depend on the underlying stock. We explain their non-Gaussian fluctuations using the nonextensive thermodynamics parameter qq. A generalized form of the Black-Scholes (B-S) partial differential equation, and some closed-form solutions are obtained. The standard B-S equation (q=1q=1) which is used by economists to calculate option prices requires multiple values of the stock volatility (known as the volatility smile). Using q=1.5q=1.5 which well models the empirical distribution of returns, we get a good description of option prices using a single volatility.Comment: final version (published

    Towards Minkowski Vacua in Type II String Compactifications

    Get PDF
    We study the vacuum structure of compactifications of type II string theories on orientifolds with SU(3)xSU(3) structure. We argue that generalised geometry enables us to treat these non-geometric compactifications using a supergravity analysis in a way very similar to geometric compactifications. We find supersymmetric Minkowski vacua with all the moduli stabilised at weak string coupling and all the tadpole conditions satisfied. Generically the value of the moduli fields in the vacuum is parametrically controlled and can be taken to arbitrarily large values.Comment: 33 pages; v2 minor corrections, references added, version to appear in JHE

    Superspace formulation of general massive gauge theories and geometric interpretation of mass-dependent BRST symmetries

    Get PDF
    A superspace formulation is proposed for the osp(1,2)-covariant Lagrangian quantization of general massive gauge theories. The superalgebra os0(1,2) is considered as subalgebra of sl(1,2); the latter may be considered as the algebra of generators of the conformal group in a superspace with two anticommuting coordinates. The mass-dependent (anti)BRST symmetries of proper solutions of the quantum master equations in the osp(1,2)-covariant formalism are realized in that superspace as invariance under translations combined with mass-dependent special conformal transformations. The Sp(2) symmetry - in particular the ghost number conservation - and the "new ghost number" conservation are realized as invariance under symplectic rotations and dilatations, respectively. The transformations of the gauge fields - and of the full set of necessarily required (anti)ghost and auxiliary fields - under the superalgebra sl(1,2) are determined both for irreducible and first-stage reducible theories with closed gauge algebra.Comment: 35 pages, AMSTEX, precision of reference

    Vacancy complexes in nonequilibrium germanium-tin semiconductors

    Full text link
    Understanding the nature and behavior of vacancy-like defects in epitaxial GeSn metastable alloys is crucial to elucidate the structural and optoelectronic properties of these emerging semiconductors. The formation of vacancies and their complexes is expected to be promoted by the relatively low substrate temperature required for the epitaxial growth of GeSn layers with Sn contents significantly above the equilibrium solubility of 1 at.%. These defects can impact both the microstructure and charge carrier lifetime. Herein, to identify the vacancy-related complexes and probe their evolution as a function of Sn content, depth-profiled pulsed low-energy positron annihilation lifetime spectroscopy and Doppler broadening spectroscopy were combined to investigate GeSn epitaxial layers with Sn content in the 6.5-13.0 at.% range. The samples were grown by chemical vapor deposition method at temperatures between 300 and 330 {\deg}C. Regardless of the Sn content, all GeSn samples showed the same depth-dependent increase in the positron annihilation line broadening parameters, which confirmed the presence of open volume defects. The measured average positron lifetimes were the highest (380-395 ps) in the region near the surface and monotonically decrease across the analyzed thickness, but remain above 350 ps. All GeSn layers exhibit lifetimes that are 85 to 110 ps higher than the Ge reference layers. Surprisingly, these lifetimes were found to decrease as Sn content increases in GeSn layers. These measurements indicate that divacancies are the dominant defect in the as-grown GeSn layers. However, their corresponding lifetime was found to be shorter than in epitaxial Ge thus suggesting that the presence of Sn may alter the structure of divacancies. Additionally, GeSn layers were found to also contain a small fraction of vacancy clusters, which become less important as Sn content increases

    A New Genus and Four New Species of Fossil Diptera from Montana and Colorado

    Full text link
    269-279http://deepblue.lib.umich.edu/bitstream/2027.42/48339/2/ID180.pd
    • …
    corecore