105 research outputs found

    Effect of short schemes on body composition measurements using Air-Displacement Plethysmography

    Get PDF
    BACKGROUND: Air-displacement plethysmography (ADP) is becoming a popular method to assess body composition. Several studies have shown certain types of clothing can affect measurements of body density, however no study has specifically investigated the effect of cotton gym shorts and spandex bicycle shorts on body density. METHODS: Thirty-seven males (23.0 ± 3.2 yr., 177.3 ± 5.4 cm., 74.8 ± 7.5 kg.) and thirty-eight females (23.7 ± 5.3 yr., 163.6 ± 8.4 cm., 57.1 ± 7.0 kg.) had their body density measured by ADP in three clothing schemes: 1) a tight fitting Speedo(® )swim suit (criterion measure), 2) cotton gym shorts, and 3) spandex bicycle shorts. The clothing was provided by the University of Oklahoma Body Composition Laboratory and the testing schemes were performed in random order. RESULTS: The regression of body density by the criterion measure against body density while wearing cotton gym shorts for the entire group (y = 0.001 + 0.991x, SEE = 0.003 g/cm(3)) and the females (y = 0.059 + 0.934x, SEE = 0.003 g/cm(3)) did not significantly deviate from the line of identity. However in males the regression significantly deviated from the line of identity (y = 0.052 + 0.944x, SEE = 0.002 g/cm(3)). Body density by the criterion measure and body density while wearing spandex bicycle shorts did not significantly differ from the line of identity for the entire group (y = -0.018 + 1.013x SEE = 0.003 g/cm(3)), in males (y = -0.002 + 1.001x, SEE = 0.003 g/cm(3)), or females (y = 0.073 + 0.925x, SEE = 0.003 g/cm(3)). Residual plot analysis revealed no group or gender bias in either the cotton gym shorts or in the spandex bicycle shorts. CONCLUSION: It would appear bicycle spandex shorts are an acceptable alternative to a Speedo(® )like swim suit, however we advise that subjects adhere to the strict clothing protocol that is recommended by the manufacturer

    Distance-dependent increase in quantum dot photoluminescence by molecular beacons containing dark quenchers

    Get PDF
    Förster resonance energy transfer is a fluorescence-based technique currently used for numerous biotechnological applications. Although organic fluorophores have traditionally been employed for this method, quantum dots have many unique optical characteristics that make them attractive candidates for this usage. As the present understanding of how quantum dots behave as energy donors is incomplete, it is necessary to conduct further studies towards the physicochemical nature of this phenomenon. Here, we attempt to assess the distance- dependency for quantum dot-based energy transfer by spacing dark quenchers at increasing distances from these nanoparticles’ surfaces.  We describe a surprising finding that quenchers can actually increase the average fluorescence intensity of quantum dot solutions, and we propose a theoretical explanation, which may allow others to more accurately conduct quantitative studies in the future

    Impact of maternal weight on body composition and weight of the infant.

    Get PDF
    Results. After controlling for neonate age at time of testing, significant differences were found between groups for %fat (12.5 +/- 4.2% vs. 13.6 +/- 4.3%; P ≤ 0.0001), fat mass (414.1 +/- 264.2 g vs. 448.3 +/- 262.2 g; P ≤ 0.05) and fat-free mass (3310.5 +/- 344.6 g vs. 3162.2 +/- 343.4 g; P ≤ 0.05), with no significant differences between birth length (50.7 +/- 2.6 cm vs. 49.6 +/- 2.6 cm; P = 0.08) or birth weight (3433.0 +/- 396.3 g vs. 3368.0 +/- 399.6 g; P = 0.44).Objective. The purpose of this study was to compare body weight and composition (%fat, fat mass, and fat-free mass) in neonates born to mothers with a normal pre-gravid BMI (< 25 kg/m2) versus neonates born to mothers with an overweight/obese pre-gravid BMI (≥ 25 kg/m2).Study design. Seventy-two neonates (33 from normal mothers and 39 from overweight/obese mothers) of singleton pregnancies with normal glucose tolerance had their body weight and body composition assessed by air-displacement plethysmography.Conclusions. Neonates born to mothers who have a normal BMI have significantly less total and relative fat, and more fat-free mass than neonates born to overweight/obese mothers. Though preliminary, these data suggest that the antecedents of future disease risk (e.g. cardiovascular disease, diabetes, and obesity) occur early in life

    The effect of the holiday season on body weight and composition in college students

    Get PDF
    BACKGROUND: With the rapid increase in obesity rates, determining critical periods for weight gain and the effects of changes in fat mass is imperative. The purpose of this study was to examine changes in body weight and composition over the holiday season (Thanksgiving through New Year's) in male and female college students. METHODS: Subjects completed three visits: the first occurred within 2 weeks prior to Thanksgiving, the second occurred within 5 to 7 days following Thanksgiving, and the third occurred within 10 days following New Year's Day. A total of 82 healthy male and female college age subjects participated. Body composition by dual energy x-ray absorptiometry (DXA) was assessed at visits 1 and 3 while body weight was assessed at all three visits. RESULTS: Average body weight remained relatively unchanged from pre-Thanksgiving to post-New Year's (71.3 ± 14 kg vs. 71.2 ± 15 kg; P = 0.71) and, in fact, a subset of normal weight subjects lost a significant amount of body weight. However, percent body fat (25.9 ± 9 %fat vs. 27.0 ± 9 %fat; P < 0.01) and fat mass (18.3 ± 8 kg and 19.1 ± 8 kg; P < 0.01) significantly increased from pre-Thanksgiving to post-New Year's while fat-free mass (48.7 ± 12 kg and 48.3 ± 11 kg; P = 0.08) was not significantly different than the post-New Year's. A significant positive relationship (P < 0.001) between the change in BMI and percent fat, total fat mass, total fat free mass, and trunk fat mass for the pre-Thanksgiving and post-New Year's visits were found. The same significant positive relationships (P < 0.001) were also observed between the change in body weight and percent fat, total fat mass, total fat free mass, and trunk fat mass. CONCLUSION: Despite the fact that body weight remained unchanged over the course of the holiday season, a significant increase in %body fat and fat mass was observed. With recent evidence showing marked morbidity and mortality to be associated with increased body fat (particularly abdominal adiposity), results from this study suggest body weight alone may underestimate the potentially deleterious effects of the holiday season

    An anthropometric model to estimate neonatal fat mass using air displacement plethysmography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current validated neonatal body composition methods are limited/impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The purpose of this study was to develop an anthropometric model to estimate neonatal fat mass (kg) using an air displacement plethysmography (PEA POD<sup>® </sup>Infant Body Composition System) as the criterion.</p> <p>Methods</p> <p>A total of 128 healthy term infants, 60 females and 68 males, from a multiethnic cohort were included in the analyses. Gender, race/ethnicity, gestational age, age (in days), anthropometric measurements of weight, length, abdominal circumference, skin-fold thicknesses (triceps, biceps, sub scapular, and thigh), and body composition by PEA POD<sup>® </sup>were collected within 1-3 days of birth. Backward stepwise linear regression was used to determine the model that best predicted neonatal fat mass.</p> <p>Results</p> <p>The statistical model that best predicted neonatal fat mass (kg) was: -0.012 -0.064*gender + 0.024*day of measurement post-delivery -0.150*weight (kg) + 0.055*weight (kg)<sup>2 </sup>+ 0.046*ethnicity + 0.020*sum of three skin-fold thicknesses (triceps, sub scapular, and thigh); R<sup>2 </sup>= 0.81, MSE = 0.08 kg.</p> <p>Conclusions</p> <p>Our anthropometric model explained 81% of the variance in neonatal fat mass. Future studies with a greater variety of neonatal anthropometric measurements may provide equations that explain more of the variance.</p

    Characterization of body weight and composition changes during the sophomore year of college

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Years spent in college represents a critical time for obesity development though little information is known regarding how body weight and composition changes beyond the first year of college. The aim of this study was to investigate changes in body weight and composition and the factors influencing those changes among sophomore females.</p> <p>Methods</p> <p>Body composition by dual energy X-ray absorptiometry was obtained in participants beginning during their freshman year and continued through their sophomore year.</p> <p>Results</p> <p>No difference was observed between sophomore year fall and spring visits for body weight (60.4 versus 60.6 kg) or fat mass (19.3 versus 18.7 kg). However, a significant (<it>P </it>≤ 0.05) decrease was observed for body fat (31.9 versus 30.9 %fat) and a significant increase was observed for fat-free mass (37.7 versus 38.4 kg). Participants living off campus significantly (<it>P </it>≤ 0.05) declined in body fat (33.0 versus 31.0 %fat) and fat mass (19.4 versus 18.2 kg) and increased in fat-free mass (36.1 versus 37.2 kg) with no differences in those living on campus.</p> <p>Conclusion</p> <p>No change in body weight was observed in females during their sophomore year. However, an increase in fat-free mass accompanied with a decrease in fat mass resulted in a decrease in body fat. Participants living off campus had favorable changes in their body composition by means of decreasing %fat and fat mass while increasing fat-free mass. Participants living on campus did not demonstrate these favorable changes.</p

    Validity of air-displacement plethysmography in the assessment of body composition changes in a 16-month weight loss program

    Get PDF
    OBJECTIVE: To compare the accuracy of air displacement plethysmography (ADP) and dual energy x-ray absorptionmetry (DXA) in tracking changes in body composition after a 16 month weight loss intervention in overweight and obese females. METHODS: 93 healthy female subjects (38.9 ± 5.7 yr, 159.8 ± 5.6 cm, 76.7 ± 9.9 kg, 30.0 ± 3.4 kg/m(2)) completed a 16 month weight loss intervention. Eligible subjects attended 15 treatment sessions occurring over the course of 4 months with educational content including topics relating to physical activity and exercise, diet and eating behavior, and behavior modification. In the remaining 12 months, subjects underwent a lifestyle program designed to increase physical activity and improve eating habits. Before and after the intervention, subjects had their percent body fat (%fat), fat mass (FM), and fat-free mass (FFM)) assessed by DXA and ADP. RESULTS: Significant differences (p ≤ 0.001) were found between DXA and ADP at baseline %fat (46.0 % fat vs. 42.0 % fat), FM (35.3 kg vs. 32.5 kg) and FFM (40.8 kg vs. 44.2 kg) as well as at post intervention for %fat (42.1% fat vs. 38.3 % fat), FM (30.9 kg vs. 28.4 kg) and FFM (41.7 kg vs. 44.7 kg). At each time point, ADP %fat and total FM was significantly lower (p ≤ 0.001) than DXA while FFM was significantly higher (p ≤ 0.001). However, both techniques tracked %fat changes similarly considering that there were no differences between the two means. Furthermore, a Bland-Altman analysis was performed and no significant bias was observed, thus demonstrating the ability of ADP to measure body fat across a wide range of fatness. CONCLUSION: At baseline and post weight loss, a significant difference was found between ADP and DXA. However, the results indicate both methods are highly related and track changes in %fat similarly after a weight loss program in overweight and obese females. Additionally, the mean changes in %fat were similar between the two techniques, suggesting that ADP can be translated to its use in clinical practice and research studies as DXA currently is used

    Population structure and plumage polymorphism: The intraspecific evolutionary relationships of a polymorphic raptor, Buteo jamaicensis harlani

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenotypic and molecular genetic data often provide conflicting patterns of intraspecific relationships confounding phylogenetic inference, particularly among birds where a variety of environmental factors may influence plumage characters. Among diurnal raptors, the taxonomic relationship of <it>Buteo jamaicensis harlani </it>to other <it>B. jamaicensis </it>subspecies has been long debated because of the polytypic nature of the plumage characteristics used in subspecies or species designations.</p> <p>Results</p> <p>To address the evolutionary relationships within this group, we used data from 17 nuclear microsatellite loci, 430 base pairs of the mitochondrial control region, and 829 base pairs of the melanocortin 1 receptor (<it>Mc1r</it>) to investigate molecular genetic differentiation among three <it>B. jamaicensis </it>subspecies (<it>B. j. borealis</it>, <it>B. j. calurus</it>, <it>B. j. harlani</it>). Bayesian clustering analyses of nuclear microsatellite loci showed no significant differences between <it>B. j. harlani </it>and <it>B. j. borealis</it>. Differences observed between <it>B. j. harlani </it>and <it>B. j. borealis </it>in mitochondrial and microsatellite data were equivalent to those found between morphologically similar subspecies, <it>B. j. borealis </it>and <it>B. j. calurus</it>, and estimates of migration rates among all three subspecies were high. No consistent differences were observed in <it>Mc1r </it>data between <it>B. j. harlani </it>and other <it>B. jamaicensis </it>subspecies or between light and dark color morphs within <it>B. j. calurus</it>, suggesting that <it>Mc1r </it>does not play a significant role in <it>B. jamaicensis </it>melanism.</p> <p>Conclusions</p> <p>These data suggest recent interbreeding and gene flow between <it>B. j. harlani </it>and the other <it>B. jamaicensis </it>subspecies examined, providing no support for the historical designation of <it>B. j. harlani </it>as a distinct species.</p

    Percent body fat estimations in college women using field and laboratory methods: a three-compartment model approach

    Get PDF
    This is the publisher's version, also available electronically from http://www.jissn.com/content/4/1/16.Background Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. This investigation sought to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age women compared to the Siri three-compartment model (3C). Methods Thirty Caucasian women (21.1 ± 1.5 yrs; 164.8 ± 4.7 cm; 61.2 ± 6.8 kg) had their %fat estimated by BIA using the BodyGram™ computer program (BIA-AK) and population-specific equation (BIA-Lohman), NIR (Futrex® 6100/XL), a quadratic (SF3JPW) and linear (SF3WB) skinfold equation, air-displacement plethysmography (BP), and hydrostatic weighing (HW). Results All methods produced acceptable total error (TE) values compared to the 3C model. Both laboratory methods produced similar TE values (HW, TE = 2.4%fat; BP, TE = 2.3%fat) when compared to the 3C model, though a significant constant error (CE) was detected for HW (1.5%fat, p ≤ 0.006). The field methods produced acceptable TE values ranging from 1.8 – 3.8 %fat. BIA-AK (TE = 1.8%fat) yielded the lowest TE among the field methods, while BIA-Lohman (TE = 2.1%fat) and NIR (TE = 2.7%fat) produced lower TE values than both skinfold equations (TE > 2.7%fat) compared to the 3C model. Additionally, the SF3JPW %fat estimation equation resulted in a significant CE (2.6%fat, p ≤ 0.007). Conclusion Data suggest that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian women. When the use of a laboratory method is not feasible, NIR, BIA-AK, BIA-Lohman, SF3JPW, and SF3WB are acceptable field methods to estimate %fat in this population
    corecore