125 research outputs found

    Metacognition, Social Cognition, and Mentalizing In Psychosis: Are These Distinct Constructs When It Comes To Subjective Experience Or Are We Just Splitting Hairs?

    Get PDF
    Research using the integrated model of metacognition has suggested that the construct of metacognition could quantify the spectrum of activities that, if impaired, might cause many of the subjective disturbances found in psychosis. Research on social cognition and mentalizing in psychosis, however, has also pointed to underlying deficits in how persons make sense of their experience of themselves and others. To explore the question of whether metacognitive research in psychosis offers unique insight in the midst of these other two emerging fields, we have offered a review of the constructs and research from each field. Following that summary, we discuss ways in which research on metacognition may be distinguished from research on social cognition and mentalizing in three broad categories: (1) experimental procedures, (2) theoretical advances, and (3) clinical applications or indicated interventions. In terms of its research methods, we will describe how metacognition makes a unique contribution to understanding disturbances in how persons make sense of and interpret their own experiences within the flow of life. We will next discuss how metacognitive research in psychosis uniquely describes an architecture which when compromised – as often occurs in psychosis – results in the loss of persons’ sense of purpose, possibilities, place in the world and cohesiveness of self. Turning to clinical issues, we explore how metacognitive research offers an operational model of the architecture which if repaired or restored should promote the recovery of a coherent sense of self and others in psychosis. Finally, we discuss the concrete implications of this for recovery-oriented treatment for psychosis as well as the need for further research on the commonalities of these approaches

    Diabetes medications and associations with Covid-19 outcomes in the N3C database: A national retrospective cohort study

    Get PDF
    Background While vaccination is the most important way to combat the SARS-CoV-2 pandemic, there may still be a need for early outpatient treatment that is safe, inexpensive, and currently widely available in parts of the world that do not have access to the vaccine. There are in-silico, in-vitro, and in-tissue data suggesting that metformin inhibits the viral life cycle, as well as observational data suggesting that metformin use before infection with SARS-CoV2 is associated with less severe COVID-19. Previous observational analyses from single-center cohorts have been limited by size. Methods Conducted a retrospective cohort analysis in adults with type 2 diabetes (T2DM) for associations between metformin use and COVID-19 outcomes with an active comparator design of prevalent users of therapeutically equivalent diabetes monotherapy: metformin versus dipeptidyl-peptidase-4-inhibitors (DPP4i) and sulfonylureas (SU). This took place in the National COVID Cohort Collaborative (N3C) longitudinal U.S. cohort of adults with +SARS-CoV-2 result between January 1 2020 to June 1 2021. Findings included hospitalization or ventilation or mortality from COVID-19. Back pain was assessed as a negative control outcome. Results 6,626 adults with T2DM and +SARS-CoV-2 from 36 sites. Mean age was 60.7 +/- 12.0 years; 48.7% male; 56.7% White, 21.9% Black, 3.5% Asian, and 16.7% Latinx. Mean BMI was 34.1 +/- 7.8kg/m2. Overall 14.5% of the sample was hospitalized; 1.5% received mechanical ventilation; and 1.8% died. In adjusted outcomes, compared to DPP4i, metformin had non-significant associations with reduced need for ventilation (RR 0.68, 0.32–1.44), and mortality (RR 0.82, 0.41–1.64). Compared to SU, metformin was associated with a lower risk of ventilation (RR 0.5, 95% CI 0.28–0.98, p = 0.044) and mortality (RR 0.56, 95% CI 0.33–0.97, p = 0.037). There was no difference in unadjusted or adjusted results of the negative control. Conclusions There were clinically significant associations between metformin use and less severe COVID-19 compared to SU, but not compared to DPP4i. New-user studies and randomized trials are needed to assess early outpatient treatment and post-exposure prophylaxis with therapeutics that are safe in adults, children, pregnancy and available worldwide

    Vaccination Against SARS-CoV-2 Is Associated With a Lower Viral Load and Likelihood of Systemic Symptoms

    Get PDF
    Background: Data conflict on whether vaccination decreases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load. The objective of this analysis was to compare baseline viral load and symptoms between vaccinated and unvaccinated adults enrolled in a randomized trial of outpatient coronavirus disease 2019 (COVID-19) treatment. Methods: Baseline data from the first 433 sequential participants enrolling into the COVID-OUT trial were analyzed. Adults aged 30-85 with a body mass index (BMI) ≥25 kg/m2 were eligible within 3 days of a positive SARS-CoV-2 test and <7 days of symptoms. Log10 polymerase chain reaction viral loads were normalized to human RNase P by vaccination status, by time from vaccination, and by symptoms. Results: Two hundred seventy-four participants with known vaccination status contributed optional nasal swabs for viral load measurement: median age, 46 years; median (interquartile range) BMI 31.2 (27.4-36.4) kg/m2. Overall, 159 (58%) were women, and 217 (80%) were White. The mean relative log10 viral load for those vaccinated <6 months from the date of enrollment was 0.11 (95% CI, -0.48 to 0.71), which was significantly lower than the unvaccinated group (P = .01). Those vaccinated ≥6 months before enrollment did not differ from the unvaccinated with respect to viral load (mean, 0.99; 95% CI, -0.41 to 2.40; P = .85). The vaccinated group had fewer moderate/severe symptoms of subjective fever, chills, myalgias, nausea, and diarrhea (all P < .05). Conclusions: These data suggest that vaccination within 6 months of infection is associated with a lower viral load, and vaccination was associated with a lower likelihood of having systemic symptoms

    Polycyclic Aromatic Hydrocarbon Biodegradation as a Function of Oxygen Tension in Contaminated Soil

    No full text
    Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was taken from a prepared-bed land treatment unit at the Champion International Superfund Site in Libby, Montana. This soil was contaminated with wood preserving wastes including creosote (composed primarily of polycyclic aromatic hydrocarbons and pentachlorophenol). Degradation rates of 14C-pyrene and PAH compounds were found to be enhanced under soil gas oxygen concentrations between 2% and 21% in the contaminated soil. Between 45% and 55% of 14C-pyrene spiked onto the soil was mineralized after 70 days at soil gas oxygen levels between 2% and 21%. No statistically significant mineralization was found to occur at 0% oxygen concentrations. Mineralization of 14C-pyrene in contaminated soil poisoned with mercuric chloride was determined to be less than 0.5%. Degradation of indigenous nonradiolabeled PAH in non-poisoned soil was statistically significantly greater than in poisoned soil. These results indicated that the degradation of 14C-pyrene and PAH compounds was biological and would occur under low oxygen concentrations. For example, the use of soil aeration technology in order to achieve continued treatment for buried lifts of soil while new lifts are added will decrease the total time for soil remediation of the prepared-bed

    Soil Gas Oxygen Tension and Pentachlorophenol Biodegradation

    No full text
    Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pentachlorophenol and nonlabeled pentachlorophenol (PCP) present in soil taken from a prepared-bed land treatment unit at the Champion International Superfund Site in Libby, Mont. This soil was contaminated with wood preserving wastes including creosote and PCP. Degradation rates of 14C-PCP and nonlabeled PCP were found to be enhanced under soil gas oxygen concentrations between 2 and 21% in the contaminated soil. Between 48 and 64% of 14C-PCP spiked onto the soil was mineralized after 70 days at soil gas oxygen levels between 2 and 21%. No statistically significant mineralization of PCP was found to occur at 0% oxygen concentrations. Mineralization of 14C-PCP in contaminated soil poisoned with mercuric chloride was determined to be less than 0.2%. Degradation of indigenous nonradiolabeled PCP in the nonpoisoned soil was statistically significantly greater than in poisoned soil. These results indicated that degradation of PCP was biological and would occur under low oxygen concentrations. Soil gas oxygen concentrations necessary for PCP biodegradation (2–5%) could be maintained, for example, using bioventing technology in order to achieve continued treatment of buried lifts of soil while new lifts are added, thus decreasing the total time for soil remediation of the prepared bed
    • …
    corecore