7 research outputs found
The potential role of habitat on intestinal helminths of mountain hares, Lepus timidus
Over the last century in the uplands of Scotland, the extent of heather moorland which supports high densities of mountain hares Lepus timidus has diminished and has gradually been replaced by large-scale commercial forestry plantations or expanding natural woodlands. The potential impact of such a change in land use on host–parasite interactions was investigated by comparing the intensity and prevalence of infection of hares by parasites in two separate habitats: a large hare-fenced young forestry plantation and the adjacent open moorland. Carcasses were collected in November 1990 from within both habitats and after the woodland had been enclosed for nine months. Age, sex, fatness (kidney fat index) and degree of infection of hares were noted. Two parasites were recorded: the nematode Trichostrongylus retortaeformis and the cestode Mosgovoyia pectinata. Clear differences in the intensity of infection of adults occupying the different habitats had occurred in the nine months since woodland enclosure. Adult mountain hares in the woodland had levels of infections approaching four times that observed in hares occupying the open moorland and although not significant, the prevalence of infection was greater in hosts inhabiting the woodland than the open moorland. It is suggested that the parasite–host relationship differs between the two habitats and as heather-dominated moorland landscapes become more fragmented with the increasing establishment of woodlands, the impact of parasites on the life history strategies of mountain hares needs to be reconsidered.</jats:p
Activity patterns of insectivorous bats and birds in northern Scandinavia (69° N), during continuous midsummer daylight
Previous studies suggest that many species of insectivorous bats are nocturnal, despite the relatively low availability of their insect prey at night, because of the risk of predation by diurnal predatory birds. We hypothesised that if this was the case bats living above the arctic circle would alter their feeding behaviour during midsummer because there would no longer be any benefit to restricting their activity to the period when their prey are least abundant. Alternatively, if bats were more influenced by competition from aerial insectivorous birds they would continue to feed at ‘night’ to avoid such competition. In northern Norway (69° N), during continuous midsummer daylight, insectivorous sand martins (Riparia riparia) concentrated their aerial feeding activity when aerial insects were most abundant. The birds stopped feeding between 23:00 and 07:00 when aerial insects were least abundant. In contrast, northern bats (Eptesicus nilssonii), fed mostly between 22:00 and 02:00, coinciding with the lowest aerial insect availability, and with the period when light levels were lowest (ca 1000 lux). Bat activity patterns were closest to those predicted by the avian competition hypothesis. The low densities of both sand martins and Northern bats in the study area, however, were less consistent with this hypothesis. Possibly populations of both species were higher historically and the observed patterns reflected historical competition. Bat activity was most closely correlated to ambient light levels. This raised two alternative explanations that we could not eliminate. Perhaps there was differential predation risk, between the brightest and darkest parts of the day, because the visual capacities of falcons are strongly dependent on luminance. Alternatively the bats may have been entrained to emerge at given light levels by their behaviour at other times of year
The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies
Global Positioning System (GPS) satellite navigation receivers are increasingly being used in ecological and behavioural studies to track the movements of animals in relation to the environments in which they live and forage. Concurrent recording of the animal's foraging behaviour (e.g. from jaw movement recording) allows foraging locations to be determined. By combining the animal GPS movement and foraging data with habitat and vegetation maps using a Geographical Information System (GIS) it is possible to relate animal movement and foraging location to landscape and habitat features and vegetation types. This powerful approach is opening up new opportunities to study the spatial aspects of animal behaviour, especially foraging behaviour, with far greater precision and objectivity than before. Advances in GPS technology now mean that sub-metre precision systems can be used to track animals, extending the range of application of this technology from landscape and habitat scale to paddock and patch scale studies. As well as allowing ecological hypotheses to be empirically tested at the patch scale, the improvements in precision are also leading to the approach being increasing extended from large scale ecological studies to smaller (paddock) scale agricultural studies. The use of sub-metre systems brings both new scientific opportunities and new technological challenges. For example, fitting all of the animals in a group with sub-metre precision GPS receivers allows their relative inter-individual distances to be precisely calculated, and their relative orientations can be derived from data from a digital compass fitted to each receiver. These data, analyzed using GIS, could give new insights into the social behaviour of animals. However, the improvements in precision with which the animals are being tracked also needs equivalent improvements in the precision with which habitat and vegetation are mapped. This needs some degree of automation, as vegetation mapping at a fine spatial scale using the traditional manual approach is far too time consuming. This paper explores these issues, discussing new applications as well as approaches to overcoming some of the associated problems
