1,602 research outputs found

    Climate Change / Cambio Climatico

    Get PDF
    No previous publication

    Are Scattering Properties of Graphs Uniquely Connected to Their Shapes?

    Full text link
    The famous question of Mark Kac "Can one hear the shape of a drum?" addressing the unique connection between the shape of a planar region and the spectrum of the corresponding Laplace operator can be legitimately extended to scattering systems. In the modified version one asks whether the geometry of a vibrating system can be determined by scattering experiments. We present the first experimental approach to this problem in the case of microwave graphs (networks) simulating quantum graphs. Our experimental results strongly indicate a negative answer. To demonstrate this we consider scattering from a pair of isospectral microwave networks consisting of vertices connected by microwave coaxial cables and extended to scattering systems by connecting leads to infinity to form isoscattering networks. We show that the amplitudes and phases of the determinants of the scattering matrices of such networks are the same within the experimental uncertainties. Furthermore, we demonstrate that the scattering matrices of the networks are conjugated by the, so called, transplantation relation.Comment: 3 figures; Physical Review Letters, 201

    Acid Sphingomyelinase Regulates the Localization and Trafficking of Palmitoylated Proteins

    Get PDF
    In human, loss of Acid Sphingomeylinase (ASM/SMPD1) causes Niemann-Pick Disease, type A. ASM hydrolyzes sphingomyelins to produce ceramides but protein targets of ASM remain largely unclear. ... See full text for complete abstract

    Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption

    Full text link
    We present the results of experimental and numerical study of the distribution of the reflection coefficient P(R) and the distributions of the imaginary P(v) and the real P(u) parts of the Wigner's reaction K matrix for irregular fully connected hexagon networks (graphs) in the presence of strong absorption. In the experiment we used microwave networks, which were built of coaxial cables and attenuators connected by joints. In the numerical calculations experimental networks were described by quantum fully connected hexagon graphs. The presence of absorption introduced by attenuators was modelled by optical potentials. The distribution of the reflection coefficient P(R) and the distributions of the reaction K matrix were obtained from the measurements and numerical calculations of the scattering matrix S of the networks and graphs, respectively. We show that the experimental and numerical results are in good agreement with the exact analytic ones obtained within the framework of random matrix theory (RMT).Comment: 15 pages, 8 figure
    corecore