7 research outputs found

    Seed Dormancy-Life Form Profile for 358 Species from the Xishuangbanna Seasonal Tropical Rainforest, Yunnan Province, China Compared to World Database

    Get PDF
    Seed dormancy profiles are available for the major vegetation regions/types on earth. These were constructed using a composite of data from locations within each region. Furthermore, the proportion of species with nondormant (ND) seeds and the five classes of dormancy is available for each life form in each region. Using these data, we asked: will the results be the same if many species from a specific area as opposed to data compiled from many locations are considered? Germination was tested for fresh seeds of 358 species in 95 families from the Xishuangbanna seasonal tropical rainforest (XSTRF): 177 trees, 66 shrubs, 57 vines and 58 herbs. Seeds of 12.3% of the species were ND, and 0.3, 14.8, 60.6, 12.0 and 0% of the species had morphological (MD), morphophysiological (MPD), physiological (PD), physical (PY), and combinational (PY + PD) dormancy, respectively. PD was more important than ND in all life forms, PY was highest in shrubs, MD was not important in any life form and MPD was most common for herb and vines. The seed dormancy profile for XSTRF differs considerably from the composite profile for this vegetation type worldwide, most obviously in ND being much lower and PD much higher in XSTRF

    Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications

    Full text link
    Abstract Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the future.https://deepblue.lib.umich.edu/bitstream/2027.42/152165/1/13045_2019_Article_760.pd

    Dynamic monitoring of serum tumor markers as prognostic factors in patients with advanced non-small-cell lung cancer treated with first-line immunotherapy: a multicenter retrospective study

    No full text
    Background: To date, no specific studies have reported the use of dynamic serum tumor markers (STMs) as prognostic factors in patients with advanced non-small-cell lung cancer (NSCLC) who receive first-line immunotherapy. Therefore, it is unclear whether STMs can be used as a prognostic factor for first-line immunotherapy in advanced NSCLC. Objectives: To elucidate the role of STMs in monitoring immunotherapy response in advanced NSCLC. Patients were treated with first-line programmed cell death-1/programmed cell death ligand-1 inhibitors at four Chinese centers. Design: This was a multicenter retrospective study. Methods: Blood samples were collected at baseline and after 6–8 weeks of treatment. Computed tomography scans were used to evaluate treatment efficacy according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. Post-treatment drops in STMs [Serum carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), cytokeratin fragment 19 (CYFRA21-1), carbohydrate antigen 19-9 (CA19-9), and carbohydrate antigen 125 (CA125)] were decreased ⩾20% (Group C) over baseline was used as cutoff level for defining a marker response. If STMs were increased by ⩾20% after treatment, the therapeutic effect was limited (Group A). Patients with STM changes between a 20% increase or decrease were enrolled in Group B. In univariate and multivariate stepwise Cox regression analyses, STMs and RECIST responses were analyzed for their impact on progression-free survival (PFS) and overall survival (OS). Results: The analysis included 716 patients. By multivariate analysis, CEA, NSE, CYFRA21-1, CA19-9, and CA125 (Group A versus Group B and Group A versus Group C) were associated with significant differences in PFS. Similar results were observed in the OS analysis. Similar results were observed in the adenocarcinoma subgroup analyses. In squamous cell carcinoma subgroup analyses, there was no statistical difference in PFS ( p = 0.147) or OS ( p = 0.068) between Group A and Group B for CA125. Conclusion: The increase and decrease in serum levels of STMs might be reliable prognostic factors for immunotherapy efficacy in NSCLC patients

    CyclinG1 Amplification Enhances Aurora Kinase Inhibitor-Induced Polyploid Resistance and Inhibition of Bcl-2 Pathway Reverses the Resistance

    No full text
    Background/Aims: CyclinG1 (CycG1) is frequently overexpressed in solid tumors and overexpression of CycG1 promotes cell survival upon paclitaxel exposure by inducing polyploidy. Whether and how CycG1 regulates polyploidization caused by small molecular targeted inhibitors remains unclear. Methods: Immunohistochemistry and immunoblotting were utilized to examine protein expression. Cell proliferation was measured by ATPlite assay, and cell cycle distribution and apoptosis were measured by flow cytometry and/or DNA fragmentation assays. Results: Overexpression of CycG1 in breast cancer cells caused apoptosis-resistant polyploidy upon treatment with Aurora kinase inhibitor, ZM447439 (ZM). Addition of ABT-263, a small-molecule BH3 mimetic, to ZM, produced a synergistic loss of cell viability with greater sustained tumor growth inhibition in breast cancer cell lines. Decrease of Mcl-1 and increase of NOXA caused by ZM treatment, were responsible for the synergy. Furthermore, CycG1 was highly expressed in Triple-Negative-Breast-Cancer patients treated with paclitaxel and was paralleled by decreased cell survival. Conclusion: CycG1 is a crucial factor in ZM-induced polyploidy resistance, and ABT-263/ZM combination hold therapeutic utility in the CycG1-amplified subset of breast cancer and CycG1, thus, is a promising target in breast cancer
    corecore