43 research outputs found

    Global trends in COVID-19 Alzheimer's related research: a bibliometric analysis

    Get PDF
    BackgroundThe COVID-19 pandemic has significantly impacted public health, putting people with Alzheimer's disease at significant risk. This study used bibliometric analysis method to conduct in-depth research on the relationship between COVID-19 and Alzheimer's disease, as well as to predict its development trends.MethodsThe Web of Science Core Collection was searched for relevant literature on Alzheimer's and Coronavirus-19 during 2019–2023. We used a search query string in our advanced search. Using Microsoft Excel 2021 and VOSviewer software, a statistical analysis of primary high-yield authors, research institutions, countries, and journals was performed. Knowledge networks, collaboration maps, hotspots, and regional trends were analyzed using VOSviewer and CiteSpace.ResultsDuring 2020–2023, 866 academic studies were published in international journals. United States, Italy, and the United Kingdom rank top three in the survey; in terms of productivity, the top three schools were Harvard Medical School, the University of Padua, and the University of Oxford; Bonanni, Laura, from Gabriele d'Annunzio University (Italy), Tedeschi, Gioacchino from the University of Campania Luigi Vanvitelli (Italy), Vanacore, Nicola from Natl Ctr Dis Prevent and Health Promot (Italy), Reddy, P. Hemachandra from Texas Tech University (USA), and El Haj, Mohamad from University of Nantes (France) were the authors who published the most articles; The Journal of Alzheimer's Disease is the journals with the most published articles; “COVID-19,” “Alzheimer's disease,” “neurodegenerative diseases,” “cognitive impairment,” “neuroinflammation,” “quality of life,” and “neurological complications” have been the focus of attention in the last 3 years.ConclusionThe disease caused by the COVID-19 virus infection related to Alzheimer's disease has attracted significant attention worldwide. The major hot topics in 2020 were: “Alzheimer' disease,” COVID-19,” risk factors,” care,” and “Parkinson's disease.” During the 2 years 2021 and 2022, researchers were also interested in “neurodegenerative diseases,” “cognitive impairment,” and “quality of life,” which require further investigation

    Inversion boundary annihilation in GaAs Monolithically grown on on-axis Silicon (001)

    Get PDF
    Monolithic integration of III–V materials and devices on CMOS compatible on‐axis Si (001) substrates enables a route of low‐cost and high‐density Si‐based photonic integrated circuits. Inversion boundaries (IBs) are defects that arise from the interface between III–V materials and Si, which makes it almost impossible to produce high‐quality III–V devices on Si. In this paper, a novel technique to achieve IB‐free GaAs monolithically grown on on‐axis Si (001) substrates by realizing the alternating straight and meandering single atomic steps on Si surface has been demonstrated without the use of double Si atomic steps, which was previously believed to be the key for IB‐free III–V growth on Si. The periodic straight and meandering single atomic steps on Si surface are results of high‐temperature annealing of Si buffer layer. Furthermore, an electronically pumped quantum‐dot laser has been demonstrated on this IB‐free GaAs/Si platform with a maximum operating temperature of 120 °C. These results can be a major step towards monolithic integration of III–V materials and devices with the mature CMOS technology

    Cell transcriptomic atlas of the non-human primate Macaca fascicularis.

    Get PDF
    Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.We thank W. Liu and L. Xu from the Huazhen Laboratory Animal Breeding Centre for helping in the collection of monkey tissues, D. Zhu and H. Li from the Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) for technical help, G. Guo and H. Sun from Zhejiang University for providing HCL and MCA gene expression data matrices, G. Dong and C. Liu from BGI Research, and X. Zhang, P. Li and C. Qi from the Guangzhou Institutes of Biomedicine and Health for experimental advice or providing reagents. This work was supported by the Shenzhen Basic Research Project for Excellent Young Scholars (RCYX20200714114644191), Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), Shenzhen Bay Laboratory (SZBL2019062801012) and Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011). In addition, L.L. was supported by the National Natural Science Foundation of China (31900466), Y. Hou was supported by the Natural Science Foundation of Guangdong Province (2018A030313379) and M.A.E. was supported by a Changbai Mountain Scholar award (419020201252), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), a Chinese Academy of Sciences–Japan Society for the Promotion of Science joint research project (GJHZ2093), the National Natural Science Foundation of China (92068106, U20A2015) and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075). M.L. was supported by the National Key Research and Development Program of China (2021YFC2600200).S

    Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.

    Get PDF
    Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.This work is part of the ‘‘SpatioTemporal Omics Consortium’’ (STOC) paper package. A list of STOC members is available at: http://sto-consortium.org. We would like to thank the MOTIC China Group, Rongqin Ke (Huaqiao University, Xiamen, China), Jiazuan Ni (Shenzhen University, Shenzhen, China), Wei Huang (Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China), and Jonathan S. Weissman (Whitehead Institute, Boston, USA) for their help. This work was supported by the grant of Top Ten Foundamental Research Institutes of Shenzhen, the Shenzhen Key Laboratory of Single-Cell Omics (ZDSYS20190902093613831), and the Guangdong Provincial Key Laboratory of Genome Read and Write (2017B030301011); Longqi Liu was supported by the National Natural Science Foundation of China (31900466) and Miguel A. Esteban’s laboratory at the Guangzhou Institutes of Biomedicine and Health by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16030502), National Natural Science Foundation of China (92068106), and the Guangdong Basic and Applied Basic Research Foundation (2021B1515120075).S

    Foreign Direct Investment and Wage Inequality: Evidence from China

    No full text
    Summary This study provides micro-level evidence on the close link between foreign participation and wage inequality. We investigate the wage premium and the wage spillover effect of foreign-invested enterprises in the Chinese manufacturing sector. The results indicate a significant foreign premium in both wage and non-wage compensation. The presence of foreign and Hong Kong, Macao and Taiwan (HMT) investment results in a significantly negative spillover in terms the wage level in domestic firms, and discourages wage growth in such firms. Overall, the evidence suggests that exposure to foreign investment increases inter-enterprise wage inequality.wage inequality globalization Asian China

    Transient overvoltage on overhead metal return lines of ±500 kV MMC-HVDC grid

    No full text
    The ±500 kV half-bridge modular multilevel converter-high-voltage DC (MMC-HVDC) grid project with overhead transmission line is under construction in China at present. For MMC-HVDC grid, only one electrical grounding point is allowed and thus, the metal return lines on the same towers with positive and negative polar lines are necessary. However, current studies mainly focused on the control methods of MMC-HVDC substation and few studies have been done on the transient overvoltage of overhead transmission line for the MMC-HVDC project. This study analysed the main transient overvoltage types of metal return lines of ±500 kV half-bridge MMC-HVDC grid which transmit electric power by overhead lines and clear the grounding fault by DC breakers. Based on a ±500 kV MMC-HVDC grid project, the simulation models were built using PSCAD and the possible transient overvoltage types were studied. The results showed that the most serious overvoltage was caused by the DC breaker clearing the grounding fault. Then the insulation coordination design for metal return lines was carried out. The recommended arcing horn clearances at different altitude were given. The research results provided support for the insulation design of the transmission line

    The role of circadian clocks in cancer: Mechanisms and clinical implications

    No full text
    Circadian rhythm refers to the inherent 24-h cycle oscillation of biochemical, physiological and behavioral functions, which is almost universal in eukaryotes. At least 14 core clock genes have been reported to form multiple chain feedback loops that confer intrinsic circadian rhythmicity onto the molecular clock. Accumulating evidence has shown that the circadian gene dysfunction resulted from single nucleotide polymorphisms (SNPs), deletions, epigenetic modification, and deregulation is strongly associated with cancer risk. In the present review, we describe the composition of circadian rhythm system. We highlight the function and mechanism of clock genes in cancer pathogenesis and progression. Moreover, their potential clinical implications as prognostic biomarkers and therapeutic targets have been addressed

    Employees' attitudes towards the use of upward influence strategies : a study in the Singapore work context.

    No full text
    The objective of this study is to examine an employee's Individualism-Collectivism tendency and their perceptions on the acceptability towards the use of upward influence strategies in their workplace, namely Organisationally Beneficial behaviours and Self-Indulgent behaviours in the modern Singapore society
    corecore