112 research outputs found

    Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay.

    Get PDF
    The methyl-thiazol-tetrazolium (MTT) assay is a drug resistance assay which cannot discriminate between malignant and non-malignant cells. We previously reported that samples with > or = 80% leukaemic cells at the start of culture give similar results in the MTT assay and the differential staining cytotoxicity assay, in which a discrimination between malignant and non-malignant cells can be made. However, the percentage of leukaemic cells may change during culture, which might affect the results of the MTT assay. We studied 106 untreated childhood acute lymphoblastic leukemia (ALL) samples with > or = 80% leukaemic cells at the start of culture. This percentage decreased below 80% in 28%, and below 70% in 13%, of the samples after 4 days of culture. A decrease below 70% occurred more often in case of 80-89% leukaemic cells (9/29) than in case of > or = 90% leukaemic cells at the start of culture (5/77, P = 0.0009). Samples with < 70% leukaemic cells after culture were significantly more resistant to 6 out of 13 drugs, and showed a trend towards being more resistant to two more drugs, than samples with > or = 80% leukaemic cells. No such differences were seen between samples with 70-79% and samples with > or = 80% leukaemic cells after culture. We next studied in another 30 ALL samples whether contaminating mononuclear cells could be removed by using immunoamagnetic beads. Using a beads to target cell ratio of 10:1, the percentage of leukaemic cells increased from mean 72% (s.d. 9.3%) to mean 87% (s.d. 6.7%), with an absolute increase of 2-35%. The recovery of leukaemic cells was mean 82.1% (range 56-100%, s.d. 14.0%). The procedure itself did not influence the results of the MTT assay in three samples containing only leukaemic cells. We conclude that it is important to determine the percentage of leukaemic cells at the start and at the end of the MTT assay and similar drug resistance assays. Contaminating mononuclear cells can be successfully removed from ALL samples using immunomagnetic beads. This approach may increase the number of leukaemic samples which can be evaluated for cellular drug resistance with the MTT assay or a similar cell culture drug resistance assay

    Complete Genome Characterisation of a Novel 26th Bluetongue Virus Serotype from Kuwait

    Get PDF
    Bluetongue virus is the “type” species of the genus Orbivirus, family Reoviridae. Twenty four distinct bluetongue virus (BTV) serotypes have been recognized for decades, any of which is thought to be capable of causing “bluetongue” (BT), an insect-borne disease of ruminants. However, two further BTV serotypes, BTV-25 (Toggenburg orbivirus, from Switzerland) and BTV-26 (from Kuwait) have recently been identified in goats and sheep, respectively. The BTV genome is composed of ten segments of linear dsRNA, encoding 7 virus-structural proteins (VP1 to VP7) and four distinct non-structural (NS) proteins (NS1 to NS4). We report the entire BTV-26 genome sequence (isolate KUW2010/02) and comparisons to other orbiviruses. Highest identity levels were consistently detected with other BTV strains, identifying KUW2010/02 as BTV. The outer-core protein and major BTV serogroup-specific antigen “VP7” showed 98% aa sequence identity with BTV-25, indicating a common ancestry. However, higher level of variation in the nucleotide sequence of Seg-7 (81.2% identity) suggests strong conservation pressures on the protein of these two strains, and that they diverged a long time ago. Comparisons of Seg-2, encoding major outer-capsid component and cell-attachment protein “VP2” identified KUW2010/02 as 26th BTV, within a 12th Seg-2 nucleotype [nucleotype L]. Comparisons of Seg-6, encoding the smaller outer capsid protein VP5, also showed levels of nt/aa variation consistent with identification of KUW2010/02 as BTV-26 (within a 9th Seg-6 nucleotype - nucleotype I). Sequence data for Seg-2 of KUW2010/02 were used to design four sets of oligonucleotide primers for use in BTV-26, type-specific RT-PCR assays. Analyses of other more conserved genome segments placed KUW2010/02 and BTV-25/SWI2008/01 closer to each other than to other “eastern” or “western” BTV strains, but as representatives of two novel and distinct geographic groups (topotypes). Our analyses indicate that all of the BTV genome segments have evolved under strong purifying selection
    • …
    corecore