31 research outputs found
The effect of chemotherapy combined with recombination mutant human tumor necrosis factor on advanced cancer
BACKGROUND: Past studies suggested that tumor necrosis factor (TNF) assisted anti-tumor treatment and intensified the sensitivity of chemotherapy. However its clinical application has been curbed because of its low purity, high dosage, and strong toxicity. This research, through perspective random clinical control experiment, observed the therapeutic effect of the treatment of late malignant tumor through the injection of recombinant mutant human tumor necrosis factor (rmhTNF) combined with general chemotherapy and its adverse reactions. METHODS: 105 patients with advanced malignant tumor were randomly divided into trial group, 69 patients, and control group, 36 patients. Injection of rmhTNF 4 × 10(6)u/m(2 )was given to the trial group, from the 1(st )to 7(th )days, the 11(th )to 17(th )days combined with chemotherapy course. The chemotherapy plan was as follows: CAP for patients with the NSCLC; FAM for patients with gastric cancer; FC for patients with colorectal cancer. One treatment cycle lasted for 21 days and two cycles were scheduled. The control group was given only the same chemotherapy as the trial group. RESULTS: In the trial group there was 1 CR case and 12 PR cases, and the response rate is 13/69 (18.84%); in the control group 1 PR case, the response rate 1/36 (2.78%). The response rate of the trial group was significantly higher than that of the control group (P = 0.022). The response rate for NSCLC in the trial group was 8/17 (47.06%), and 1/6 (16.67%) in the control group. The response rates for gastric cancer and colorectal cancer in the trial groups also were higher than those of the control groups. After the treatment the KPS is 89.00 ± 9.92 in the trial group, and 84.17 ± 8.84 in the control group, with a significant difference between the two groups (P = 0.028). The adverse reactions of rmhTNF injection included: pain in the injection area, chill, hardening and swelling and redness in the injection area, fever, ostealgia and myosalgia, and cold-like symptoms. All these adverse reactions were mild and bearable. CONCLUSIONS: The administration of rmhTNF injection in combination with general chemotherapy is an effective and secure means in treating advanced malignant tumor
Research on Path Planning for Robots with Improved A* Algorithm under Bidirectional JPS Strategy
Aiming to address the A* algorithm’s issues of traversing a large number of nodes, long search times, and large turning angles in path planning, a strategy for multiple improvements to the A* algorithm is proposed. Firstly, the calculation of the heuristic function is refined by utilizing the Octile distance instead of traditional distance, which more accurately predicts the optimal path length. Additionally, environmental constraints are introduced to adaptively adjust the weight of the heuristic function, balancing the trade-off between search speed and path length. Secondly, the bidirectional jump point search method is integrated, allowing simultaneous path searches from both directions. This significantly reduces path search times and the number of nodes traversed. Finally, the path undergoes two rounds of smoothing using a path smoothing strategy until the final path is generated. To validate the effectiveness of the improved A* algorithm, simulations are conducted on ten types of grid maps. Results demonstrate that the improved A* algorithm markedly decreases path search times while maintaining path length, with greater speed improvements observed as the map size increases. Furthermore, the improved algorithm is applied in experiments with mobile robots, achieving significant reductions in average path search times of 79.04% and 37.41% compared to the traditional A* algorithm and the JPS algorithm, respectively. This enhancement effectively meets the requirements for rapid path planning in mobile robotics applications
An Identification Method for Mixed Coal Vitrinite Components Based on An Improved DeepLabv3+ Network
To address the high complexity and low accuracy issues of traditional methods in mixed coal vitrinite identification, this paper proposes a method based on an improved DeepLabv3+ network. First, MobileNetV2 is used as the backbone network to reduce the number of parameters. Second, an atrous convolution layer with a dilation rate of 24 is added to the ASPP (atrous spatial pyramid pooling) module to further increase the receptive field. Meanwhile, a CBAM (convolutional block attention module) attention mechanism with a channel multiplier of 8 is introduced at the output part of the ASPP module to better filter out important semantic features. Then, a corrective convolution module is added to the network’s output to ensure the consistency of each channel’s output feature map for each type of vitrinite. Finally, images of 14 single vitrinite components are used as training samples for network training, and a validation set is used for identification testing. The results show that the improved DeepLabv3+ achieves 6.14% and 3.68% improvements in MIOU (mean intersection over union) and MPA (mean pixel accuracy), respectively, compared to the original DeepLabv3+; 12% and 5.3% improvements compared to U-Net; 9.26% and 4.73% improvements compared to PSPNet with ResNet as the backbone; 5.4% and 9.34% improvements compared to PSPNet with MobileNetV2 as the backbone; and 6.46% and 9.05% improvements compared to HRNet. Additionally, the improved ASPP module increases MIOU and MPA by 3.23% and 1.93%, respectively, compared to the original module. The CBAM attention mechanism with a channel multiplier of 8 improves MIOU and MPA by 1.97% and 1.72%, respectively, compared to the original channel multiplier of 16. The data indicate that the proposed identification method significantly improves recognition accuracy and can be effectively applied to mixed coal vitrinite identification
Direct evidence of secondary reconnection inside filamentary currents of magnetic flux ropes during magnetic reconnection
Magnetic reconnection is a fundamental plasma process of magnetic energy conversion to kinetic energy. Here, the authors show direct evidence of secondary reconnection in the filamentary currents within the flux ropes indicating a significant contribution to energy conversion in the kinetic scale during turbulent reconnection
Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds
To improve the activities of non-noble metal catalysts is highly desirable and valuable to the reduced use of noble metal resources. In this work, the supported nickel (Ni) and nickel-platinum (NiPt) nanocatalysts were derived from a layered double hydroxide/carbon composite precursor. The catalysts were characterized and the role of Pt was analysed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS) mapping, and X-ray photoelectron spectroscopy (XPS) techniques. The Ni2+ was reduced to metallic Ni0 via a self-reduction way utilizing the carbon as a reducing agent. The average sizes of the Ni particles in the NiPt catalysts were smaller than that in the supported Ni catalyst. The electronic structure of Ni was affected by the incorporation of Pt. The optimal NiPt catalysts exhibited remarkably improved activity toward the reduction of nitrophenol, which has an apparent rate constant (Ka) of 18.82 × 10−3 s−1, 6.2 times larger than that of Ni catalyst and also larger than most of the reported values of noble-metal and bimetallic catalysts. The enhanced activity could be ascribed to the modification to the electronic structure of Ni by Pt and the effect of exposed crystal planes
Incidence and risk factors of in-hospital prosthesis-related complications following total shoulder arthroplasty
Background The occurrence of prosthesis-related complications after total shoulder arthroplasty is devastating and costly. The purpose was to determine the incidence and risk of in-hospital prosthesis-related complications after total shoulder arthroplasty utilizing a large-scale sample database. Methods A retrospective database analysis was performed based on Nationwide Inpatient Sample from 2010 to 2014. Patients who underwent total shoulder arthroplasty were included. Patient demographics, hospital characteristics, length of stay, economic indicators, in-hospital mortality, comorbidities, and peri-operative complications were evaluated. Results A total of 34,198 cases were capture from the Nationwide Inpatient Sample database. There were 343 cases of in-hospital prosthesis-related complications after total shoulder arthroplasty and the overall incidence was 1%, with a more than 2.5-fold decrease from 2010 to 2014. Dislocation was the most common category among prosthesis-related complications (0.1%). The occurrence of in-hospital prosthesis-related complications was associated with significantly more total charges and slightly longer length of stay while less usage of Medicare. Risk factors of prosthesis-related complications were identified including younger age (<64 years), female, the native American, hospital in the South, alcohol abuse, depression, uncomplicated diabetes, diabetes with chronic complications, fluid and electrolyte disorders, metastatic cancer, neurological disorders, and renal failure. Interestingly, advanced age (≥65 years) and proprietary hospital were found as protective factors. Furthermore, prosthesis-related complications were associated with aseptic necrosis, rheumatoid arthritis, rotator cuff tear arthropathy, Parkinson’s disease, prior shoulder arthroscopy, and blood transfusion. Conclusions It is of benefit to study risk factors of prosthesis-related complications following total shoulder arthroplasty to ensure the appropriate management and optimize consequences although a relatively low incidence was identified
Fabrication and Characterization of Whey Protein—Citrate Mung Bean Starch—Capsaicin Microcapsules by Spray Drying with Improved Stability and Solubility
Capsaicin was microencapsulated in six different wall systems by spray drying whey protein and citrate mung bean starch at various ratios (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, 0:10) to improve its stability and water solubility and reduce its pungency. The morphological, rheological, storage stability, and physicochemical properties of capsaicin emulsion and capsaicin microcapsules were characterized. As a result, the yield of six capsaicin microcapsules was 19.63–74.99%, the encapsulation efficiency was 26.59–94.18%, the solubility was 65.97–96.32%, the moisture content was lower than 3.63% in all systems, and particle size was broadly distributed in the range of 1–60 μm. Furthermore, microcapsules with high whey protein content in the encapsulation system had an excellent emulsifier effect and wetness, smooth particle surface, and higher lightness (L*). Moreover, the system formed by composite wall materials at a ratio of whey protein to citrate mung bean starch of 7:3 had the highest retention rate and the best stability. The overall results demonstrate that whey protein combined with citrate mung starch through spray drying could be a promising strategy to produce microcapsules of poorly water-soluble compounds such as capsaicin