85 research outputs found

    Non-coherent Massive SIMO Systems in ISI Channels: Constellation Design and Performance Analysis

    Full text link
    A massive single-input multiple-output (SIMO) system with a single transmit antenna and a large number of receive antennas in intersymbol interference (ISI) channels is considered. Contrast to existing energy detection (ED)-based non-coherent receiver where conventional pulse amplitude modulation (PAM) is employed, we propose a constellation design which minimizes the symbol-error rate (SER) with the knowledge of channel statistics. To make a comparison, we derive the SERs of the ED-based receiver with both the proposed constellation and PAM, namely Pe_optP_{e\_opt} and Pe_pamP_{e\_pam}. Specifically, asymptotic behaviors of the SER in regimes of a large number of receive antennas and high signal-to-noise ratio (SNR) are investigated. Analytical results demonstrate that the logarithms of both Pe_optP_{e\_opt} and Pe_pamP_{e\_pam} decrease approximately linearly with the number of receive antennas, while Pe_optP_{e\_opt} degrades faster. It is also shown that the proposed design is of less cost, because compared with PAM, less antennas are required to achieve the same error rate

    The spectrum of low-pTp_{T} J/ψJ/\psi in heavy ion collisions in a fractal description

    Full text link
    Transverse momentum spectrum of particles in hadron gas are affected by flow, quantum and strong interaction effects. Previously, most models focus on only one of the three effects but ignore others. The unconsidered effects are taken into the fitted parameters. In this paper, we study the three effects together from a new fractal angle by physical calculation instead of data fitting. Near the critical temperature, the three effects induce J/ψJ/\psi and neighboring meson to form a two-meson structure. We set up a two-particle fractal (TPF) model to describe this structure. We propose that under the three effects, J/ψJ/\psi-π\pi two-meson state, J/ψJ/\psi and π\pi two-quark states form a self-similarity structure. With evolution, the two-meson structure disintegrate. We introduce an influencing factor qfqsq_{fqs} to describe the flow, quantum and strong interaction effects and an escort factor q2q_2 to describe the binding force and the three effects. By solving the probability and entropy equations, we obtain the values of qfqsq_{fqs} and q2q_2 at different collision energies and centrality classes. By substituting the value of qfqsq_{fqs} into distribution function, we obtain the transverse momentum spectrum of low-pTp_T J/ψJ/\psi and find it in good agreement with experimental data. We also analyze the evolution of qfqsq_{fqs} with the temperature. It is found that qfqsq_{fqs} is larger than 1. This is because the three effects decrease the number of microstates. We also find qfqsq_{fqs} decreases with decreasing the temperature. This is consistent with the fact that with the system expansion, the influence of the three effects decrease.Comment: 9 pages, 3 figure

    Low frequency noise peak near magnon emission energy in magnetic tunnel junctions

    Full text link
    We report on the low frequency (LF) noise measurements in magnetic tunnel junctions (MTJs) below 4 K and at low bias, where the transport is strongly affected by scattering with magnons emitted by hot tunnelling electrons, as thermal activation of magnons from the environment is suppressed. For both CoFeB/MgO/CoFeB and CoFeB/AlOx_{x}/CoFeB MTJs, enhanced LF noise is observed at bias voltage around magnon emission energy, forming a peak in the bias dependence of noise power spectra density, independent of magnetic configurations. The noise peak is much higher and broader for unannealed AlOx_{x}-based MTJ, and besides Lorentzian shape noise spectra in the frequency domain, random telegraph noise (RTN) is visible in the time traces. During repeated measurements the noise peak reduces and the RTN becomes difficult to resolve, suggesting defects being annealed. The Lorentzian shape noise spectra can be fitted with bias-dependent activation of RTN, with the attempt frequency in the MHz range, consistent with magnon dynamics. These findings suggest magnon-assisted activation of defects as the origin of the enhanced LF noise.Comment: 6 pages, 5 figure

    Attentive Mask CLIP

    Full text link
    Image token removal is an efficient augmentation strategy for reducing the cost of computing image features. However, this efficient augmentation strategy has been found to adversely affect the accuracy of CLIP-based training. We hypothesize that removing a large portion of image tokens may improperly discard the semantic content associated with a given text description, thus constituting an incorrect pairing target in CLIP training. To address this issue, we propose an attentive token removal approach for CLIP training, which retains tokens with a high semantic correlation to the text description. The correlation scores are computed in an online fashion using the EMA version of the visual encoder. Our experiments show that the proposed attentive masking approach performs better than the previous method of random token removal for CLIP training. The approach also makes it efficient to apply multiple augmentation views to the image, as well as introducing instance contrastive learning tasks between these views into the CLIP framework. Compared to other CLIP improvements that combine different pre-training targets such as SLIP and MaskCLIP, our method is not only more effective, but also much more efficient. Specifically, using ViT-B and YFCC-15M dataset, our approach achieves 43.9%43.9\% top-1 accuracy on ImageNet-1K zero-shot classification, as well as 62.7/42.162.7/42.1 and 38.0/23.238.0/23.2 I2T/T2I retrieval accuracy on Flickr30K and MS COCO, which are +1.1%+1.1\%, +5.5/+0.9+5.5/+0.9, and +4.4/+1.3+4.4/+1.3 higher than the SLIP method, while being 2.30×2.30\times faster. An efficient version of our approach running 1.16×1.16\times faster than the plain CLIP model achieves significant gains of +5.3%+5.3\%, +11.3/+8.0+11.3/+8.0, and +9.5/+4.9+9.5/+4.9 on these benchmarks

    Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells

    Get PDF
    Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily, although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged, and are associated with elevated transcription of HERVH, a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors, including LBP9, recently recognized as relevant to naivety in mice. LBP9-HERVH drives hESC-specific alternative and chimaeric transcripts, including pluripotency-modulating long non-coding RNAs. Disruption of LBP9, HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs, and establish novel primate-specific transcriptional circuitry regulating pluripotency
    • …
    corecore