78 research outputs found

    Adsorption of Pb2+ on magnetic modified hemp biochar prepared using microwave-assisted pyrolysis

    Get PDF
    Magnetic modified hemp biochar with an aim of high adsorption capacity and rapid adsorption rate was prepared by two simple steps using microwave pyrolyzed biochar. This was investigated as a potential green adsorbent for lead remediation from wastewater in a batch-mode experiment. The 150 – 300 µm biochar particles obtained from microwave-assisted pyrolysis of 1.5 kg hemp biomass batch at an average temperature of 600˚C were first impregnated with H2O2 and then magnetized by mixing aqueous biochar suspensions with aqueous Fe3+/Fe2+ solutions. The composition, morphology and surface chemistries of this magnetic biochar was examined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM) and BET surface area (SBET). The SBET of the magnetic hemp biochar is 83.76 m2 g-1. Batch sorption studies were performed for a 50 mg L-1 lead solution at room temperature and pH 5.5 using 0.02 g of the magnetic adsorbent in 20 ml solution for 2 hours. The experimental results have shown that the adsorption capacity of this magnetic adsorbent for Pb2+ is 43.97 mg g-1, about 87.94% removal within the 2 hours. Both pseudo-second-order and pseudo-first-order kinetic model could predict the adsorption and desorption kinetic process on the modified sorbent. EDX analysis are used to show the mechanisms for the adsorption of Pb2+ onto the adsorbent via mainly ion exchange. The Freundlich, Temkin and Langmuir models are used to predict the sorption isotherm in the system. The as-prepared magnetic hemp sorbent demonstrated a potential in heavy metal wastewater treatment

    Engineering a ratiometric fluorescent sensor membrane containing carbon dots for efficient fluoride detection and removal

    Get PDF
    Fluoride anion pollution is one of the main problems that needs to be addressed in contaminated water. Herein, we have developed a novel sensing platform using a pyrene boronic acid and carbon dots (CDs) for the selective detection and removal of fluoride (F−) ion at environmentally relevant levels. The probe consists of pyrene-boronic acid (PyB) moieties immobilized on to the surface of water-soluble CDs. The pyrene-boronic acid-based CDs (CDs-PyB) result in a sensor whose response is linear for F− concentrations over a range from 0 to 200 µM (R2 = 0.996) with a detection limit of 5.9 × 10−5 M and display high selectivity for F− over other anions. In addition, an amino-modified cellulose membrane containing CDs-PyB has been prepared for practical sensing and removal of F−. The cellulose membrane-based sensor shows great potential for the detection of F− with a high sensitivity, and excellent F− adsorption and removal efficiency of 90.2%. Moreover, an MTT assay for the membrane demonstrates high cell proliferation ca 400% after 5 days culture, indicating excellent cytocompatibility. Our approach offers a promising direction for the construction of other sensors by simply swapping the current probe with suitable replacements for a variety of relevant applications using biocompatible and abundant naturally based materials.</p

    Preface

    No full text

    INCREASE IN GRAIN BOUNDARY CONDUCTIVITY OF Li1+xAlxSn2-x(PO₄)₃ BY MIXING POWDERS PRETREATED AT DIFFERENT TEMPERATURES

    No full text
    The overall conductivity of crystalline lithium ion conductors is generally low due to the large grain boundary resistance. In order to improve the grain boundary conductivity, NASICON structured Li1+xAlxSn2-x(PO₄)₃ has been studied in this paper. Samples Li1.2Al0.2Sn1.8(PO₄)₃ with the desirable amount of Al, made of a mixture of not-treated powders and treated powders in various ratios, are prepared to investigate the mixing effect on the grain boundary conductivity. The grains morphology of samples has changed from spherical shapes to rectangular shapes upon mixing, which indicates a liquid (or glass) phase formation during sintering. The overall conductivity peaks at 20% of not-treated powders. The increase in the overall conductivity is attributed to the increase of grain boundary conductivity, not the grain conductivity. The reason accounting for the enhancement of the grain boundary conductivity is attributed to a less-resistive grain boundary as indicated by the grains morphology changes observed

    Cationic Polymers with Tailored Structures for Rendering Polysaccharide-Based Materials Antimicrobial: An Overview

    No full text
    Antimicrobial polymers have attracted substantial interest due to high demands on improving the health of human beings via reducing the infection caused by various bacteria. The review presented herein focuses on rendering polysaccharides, mainly cellulosic-based materials and starch to some extent, antimicrobial via incorporating cationic polymers, guanidine-based types in particular. Extensive review on synthetic antimicrobial materials or plastic/textile has been given in the past. However, few review reports have been presented on antimicrobial polysaccharide, cellulosic-based materials, or paper packaging, especially. The current review fills the gap between synthetic materials and natural polysaccharides (cellulose, starch, and cyclodextrin) as substrates or functional additives for different applications. Among various antimicrobial polymers, particular attention in this review is paid to guanidine-based polymers and their derivatives, including copolymers, star polymer, and nanoparticles with core-shell structures. The review has also been extended to gemini surfactants and polymers. Cationic polymers with tailored structures can be incorporated into various products via surface grafting, wet-end addition, blending, or reactive extrusion, effectively addressing the dilemma of improving substrate properties and bacterial growth. Moreover, the pre-commercial trial conducted successfully for making antimicrobial paper packaging has also been addressed

    Self-Reinforced Grease-Resistant Sheets Produced by Paper Treatment with Zinc Chloride Solution

    No full text
    A method for the production of paper with high strength and grease resistance was developed. Filter paper was impregnated by an aqueous solution of zinc chloride at a fixed temperature for several seconds. Swelling and partial dissolution of the cellulose fibers resulted in strong and compact paper. Various influencing factors were investigated in an attempt to improve the grease resistance of the paper. In addition, the structural properties of the zinc chloride-treated paper were investigated using a Fourier transform infrared (FT-IR) spectrometer, X-ray diffraction (XRD), and a scanning electron microscope (SEM). Paper treated in this manner was completely grease resistant, had greater stretch, and twice as high tensile strength when compared with untreated paper, while its burst strength more than doubled. Paper treated according to this method had the skeleton of un-dissolved cellulose fibers and the matrix of gelled cellulose. The cellulose of the paper was not chemically modified during this process
    • …
    corecore