Engineering Conferences International

ECI Digital Archives

Bio-Char II: Production, Characterization and Applications

Proceedings

9-19-2019

Adsorption of Pb2+ on magnetic modified hemp biochar prepared using microwave-assisted pyrolysis

Muhammad T. Afzal

Patrick Godwin

Huining Xiao

Follow this and additional works at: https://dc.engconfintl.org/biochar_ii

Part of the Engineering Commons

Adsorption of Pb(II) Ions from Wastewater by Magnetically Modified Biochars derived from Microwave-Assisted Pyrolyzed Biomass

Patrick M. Godwin^{a,b}, Muhammad T. Afzal^{a*}, Huining Xiao^b

^{a*} Department of Mechanical Engineering,
 ^b Department of Chemical Engineering,
 University of New Brunswick, Canada

Email: *mafzal@unb.ca

Biochar II: Production, Characterization and Applications

September 15-20, 2019, Cetraro (Calabria), Italy

Background

Why treat wastewater?

Rise in economic development

- Increase pollutions e.g. lead poisoning
- Death of aquatic lives and human
- 412 000 deaths recorded annually due to lead exposure in the USA

Increase demand for clean water

- Rapid urbanization
- Expanding industrial activities

Government Legislations

Methylene Blue, Methyl Violet, Methyl Orange

Wastewater treatment technologies

Adsorption

Membrane separation, Reverse osmosis,

Ion exchange, Chemical Precipitation, etc.

✓ Universal & Cheap
 ✓ Most Convenient
 ✓ Fast & Efficient
 ✓ Low residue generation
 ✓ Potential to recover/reuse absorbent

Types of Adsorbent

Activated Carbon, **Biochar**

Most effective in heavy metal ions adsorption from aqueous solution¹

[1] Ali I 2010 The Quest for Active Carbon Adsorbent Substitutes: Inexpensive Adsorbents for Toxic Metal Ions Removal from Wastewater *Sep. Purif. Rev.* **39** 95–171

Biochar Vs Activated Carbon

Alhashimi et. al investigated environmental and economic performance of biochar (BC) compared to activated carbon (AC) and demonstrated that:

- 1. Significantly less energy (90% less) is needed to produce biochar based adsorbents
- 2. The GHG emissions related to production for biochar are all negative as compared to all positive emissions for AC
- 3. Biochar is significantly cheaper than AC for metals removal

		Biochar	Activated Car	bon	*BC currently	
En	ergy Demand	6.1 MJ/kg	97 MJ/kg		cost between	
GHG Emissions		- 0.9 kg CO ₂ e/kg	$s CO_2 e/kg$ +6.6 kg CO ₂ e/kg		\$0.55 - \$2.20/kg	
Pri	ce *	USD \$5.00/kg	USD \$5.00/kg			
Biochar		Activated Carbon				
	Adsorption	Economic	Adsorption	Economic	Studied under	
	mg/g	Performance	mg/g	Performance	an equivalent	
nromium	3.03 - 123	\$40	1.1 - 117	\$500		
nc		\$200		\$1,240	functional	
admium	1.5 - 51.41	\$550	1.5 - 8	\$1,250	unit to adsorb	
opper	0.08 - 89	\$600	1.8 - 11.4	\$600	heavy metals.	
ad	0.07 - 256	\$300	0.20 - 152	\$180		

[2] Alhashimi H A and Aktas C B 2017 Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis *Resour. Conserv. Recycl.* **118** 13–26

What is Biochar?

A fine-grained, porous and carbon-rich material produced from the thermal degradation of organic materials under oxygenlimited conditions.

<section-header><section-header><list-item><list-item><list-item><section-header>

- Microwave-Assisted Pyrolysis
- Rapid heating of sample
- Reduces residence time and accelerates reaction
- Energy efficient
- More controllable
- Cost effective

Biochar Production

Microwave vs. Conventional Heating

- Microwave:
 - > Direct
 - Microwaves penetrate biomass and create rapidly changing electric fields
 - Dipoles continually rotate to align, movement and collision generates heat
- Uniform heating

- Conventional:
 - Indirect
 - Reactor is heated through electrical heating
 - Biomass is heated through conduction and convection
- Uneven heating

Industrial Applications of Biochars

BC Application Routes

- Developed:
 - Contaminant remediation
 - Soil amendment
 - Carbon sequestration
- Biochar filler in composites:
 - Low ash
 - > High C
 - High SSA
- Diversified applications:
 - Stable biochar market

14

Biochar Production Reactor, UNB

UNB

Scaled-up microwave reactor

- 3000 Watt max
- Large insulated single batch reactor
- Real time temperature data
- Volatiles exit through condenser
- Max. 5 kg sample

MW power supply (1), Magnetron head (2), Sub-tuner (3), Waveguide (4), SS 309 reactor (5), N₂ gas generator (6), Flow meter (7), Main power switch (8), Condenser (9), Bio-oil collector (10), Computer and data logging system (11), Temperature data acquisition system (12)

Ъ

Problem Statements

- Characterize & evaluate the adsorption behaviour of modified biochar towards heavy metal ions in an aqueous environment
- Establish proper procedures for the separation & recovery of metal loaded adsorbents from an aqueous solution

Problem Statement, Purpose & Significance

Significance

- Relief on traditional bio-sorbent like activated carbon
- Produce a cost effective and eco-friendlier adsorbent with higher adsorption capacity and selectivity for heavy metal ions
- Enhance the recovery & reusability of metal loaded adsorbent via BC modification
- Provide a deeper insight into the sorption behaviour of heavy metal ions in aqueous solution

Li Li	terature Reviews ochar Modification		UNB	
	Chemical	 Modification of functional groups (amination, carboxylation) Acid/base treatment, etc. 		
	Physical	 Steam activation Gas purging (CO₂/ammonia mixture) 		
	Impregnation with mineral oxides	 Kaolinite Gibbsite 	n	
	Magnetic	•Chemical co-precipitation of Fe ³⁺ /Fe ²⁺		

Literature Reviews

Current Work on magnetic modification

- BC application is less attractive due to difficulty of separation & recovery after use
- **Saravanan et. al** showed that magnetic BC is more thermally stable (gum kondagogu feedstock)
- **Jiang et. al** reported high adsorption capacity of magnetic BC for MO 398.08 mg/g. (chitosan-graphene oxide)
- Competitive adsorption of Pb²⁺ & Cd²⁺ from aqueous solution by magnetic sorbent (sugarcane bagasse) showed that lead inhibits copper, Yu et. al.
- **Devi & Saroha** showed that magnetic BC displays increased surface area for adsorption. (pentachlorophenol removal)
- Yuwei & Jianlong showed that magnetic BC has adsorption capacity of 35.5 mg/g for Cu²⁺(aq).
- NONE considered the current research activities

LP-

Biochar application for wastewater treatment

Work done so far

- Mostly at lab scale, focusing on sorption of single metal spiked solution
- Few studies have assessed magnetic adsorbents
- ALL published work employed **PRISTINE/MODIFY BC** prepared by **CONVENTIONAL PYROLYSIS**

Selected work

- Yu et. al investigated competitive adsorption using magnetic sugarcane bagasse not biochar
- Mohan et. al studied competitive sorption of lead & cadmium ions with magnetic oak bark BC BC produced by conventional pyrolysis

Research Questions & Hypotheses

How does the adsorption capacity of MWAP BC from woody biomass compares to agric. Biomass?

> E.g. Maple BC (woody biomass) vs Hemp BC (agricultural biomass).

Expected that maple BC will exhibit a higher adsorption capacity over hemp BC for heavy metal ions.

Adsorption Characterization ГЧ pH, contact time, Adsorbent dose Independent Temperature, heavy metal concentration variables Comparative test (maple & hemp BC) Estimates rate of adsorption Adsorption • Pseudo-first order Kinetics Pseudo- second order Determines adsorption behaviour of ions by Adsorption BC isotherms Langmuir model Freundlich model

Biochar Modification (A+B) Aging Distilled Biochar 30% **Biochar** in H₂O₂ - Biochar Biochar for 24 h Water Suspension H2O2 H₂O₂ (300 µm) Washing (DW Mixed at (DW) in DW (A) Solution (24h Aging) Biochar & Ethanol) + pH 10 - 11 Filtration Oven dry overnight at 50 °C Iron Oxides FeSO₄.7H₂O Fe2(SO4)3. xH2O Aqueous Fe²⁺/Fe³⁺ (B) Pb2+ Loaded Biochar Magnetic Biochar 🤞 Strip Pb²⁺with EDTA-2Na Solution Recovered Recovered Pb2++ **Magnetic Biochar Biochar in EDTA-**Magnetic Bar Magnet Remediated Magnetic Separation 2Na Solution + Solution water Biochar

Recycled Magnetic Biochar

[3] Mohan D, Kumar H, Sarswat A, Alexandre-Franco M, Pittman CU. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J. 2014;

Characterizations SEM

Unmodified maple BC (A), Magnetically modified maple BC (B)

Characterizations SEM

Unmodified Hemp BC (C), Magnetically modified Hemp BC (D)

• Hairy like particles on BC surfaces physically confirms successful Fe loading

• Percent weight of Fe on Hemp BC increased from 0.16 to 12.39. Fe loading confirmed.

Adsorption Isotherm – Magnetic Hemp Biochar

Adsorption Isotherm – Magnetic Maple Biochar

29

- Langmuir model has the best fit
- $R^2 = 0.993$

•

Sorption occur at active sites uniformly distributed on biochar surface

conditions: PH: 5.5, Time: 2h, Volume: 20 mL, Mass: 0.02g, Shaking: 300 rpm

Adsorption Kinetics – Magnetic Hemp Biochar

Pseudo-second order model fits better

UN

- $R^2 = 0.962$
 - Pb²⁺ ions removed by chemisorption

Adsorption Kinetics – Magnetic Maple Biochar

UNB

- Pseudo-second
 order model fits
 better
- $R^2 = 0.941$

•

Pb²⁺ ions removed by chemisorption

- Adsorbent maintained over 70% adsorption efficiency for Pb (II) even after 5 cycles
- Magnetic Hemp Biochar is recyclable

- Adsorbent maintained over 55% adsorption efficiency for Pb (II) even after 5 cycles
- Magnetic Maple Biochar is recyclable

Conclusions

- Previously the use of biochar for wastewater treatment is less attractive as it is difficult to separate and expensive.
- This study successfully demonstrated and simplifies the recovery, recycling of metal-loaded biochar following the adsorption of heavy metal ions from aqueous suspension.
- Experimental results showed that magnetic hemp biochar exhibits a better adsorption performance for Pb (II) ions than magnetic maple biochar under the same operating conditions.

LEST. 1785 UNIVERSITY OF NEW BRUNSWICK

Acknowledgements

36

THANK YOU!

mafzal@unb.ca