51 research outputs found

    A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials

    Get PDF
    The electrochemical carbon dioxide reduction reaction (CO_2RR) presents a viable approach to recycle CO_2 gas into low carbon fuels. Thus, the development of highly active catalysts at low overpotential is desired for this reaction. Herein, a high‐yield synthesis of unique star decahedron Cu nanoparticles (SD‐Cu NPs) electrocatalysts, displaying twin boundaries (TBs) and multiple stacking faults, which lead to low overpotentials for methane (CH_4) and high efficiency for ethylene (C_2H_4) production, is reported. Particularly, SD‐Cu NPs show an onset potential for CH_4 production lower by 0.149 V than commercial Cu NPs. More impressively, SD‐Cu NPs demonstrate a faradaic efficiency of 52.43% ± 2.72% for C_2H_4 production at −0.993 ± 0.0129 V. The results demonstrate that the surface stacking faults and twin defects increase CO binding energy, leading to the enhanced CO_2RR performance on SD‐Cu NPs

    Presión arterial del recién nacido de madres preeclámpticas eclámpticas Hospital Regional de Cajamarca 2016

    Get PDF
    La presión arterial del recién nacido está sujeta a variaciones por diversas causas entre ellas la patología materna conocida como la preeclampsia El objetivo de la presente investigación fue determinar y analizar la presión arterial durante las primeras en las primeras 36 horas de vida, en forma periódica, de los recién nacidos hijos de madres preeclámpticas y la presión arterial de los recién nacidos hijos de madres no preeclámpticas, atendidos en el Hospital Regional de Cajamarca durante los meses de enero- febrero del año 2016. El estudio fue de tipo descriptivo, comparativo, correlacional, no experimental, de corte transversal y naturaleza prospectiva. Se incluyeron a 75 recién nacidos, hijos de madres preeclámpticas, y 75 recién nacidos de madres no preeclámpticas que cumplían con los criterios de inclusión y exclusión, atendidos en el Hospital Regional de Cajamarca durante los meses de enero y febrero del año 2016. Se realizaron mediciones de presión arterial en tres ocasiones: 12, 24 y 36 horas de nacimiento. Los resultados encontrados en la presente investigación fueron: edad materna promedio de 28.5 años, en gran porcentaje multíparas (49% y 48% en ambos grupos) y la mayoría con el diagnóstico de preeclampsia severa (52%). Los neonatos nacieron predominantemente por vía vaginal (56% y 86,8%), a término (76% y 94,7%), de sexo masculino con un porcentaje de 54,7% en el primer grupo y sexo femenino en el segundo grupo con 42%; con peso y talla al nacer promedio de 3026.7 gramos y 49.2 centímetros, respectivamente, con un puntaje de Apgar en su mayoría de 8 al minuto y 9 a los cinco minutos, con una cantidad mínima de neonatos con administración prenatales de corticoides (0,7%). Se determinó que la presión arterial se incrementó en las primeras 12 horas de vida en los recién nacidos de madres preeclámpticas, regularizándose, la mayoría, a las 36 horas, continuando elevada en un buen porcentaje (30,7%). En cuanto a los recién nacidos de madres no preeclámpticas una considerable cantidad tuvo presión arterial normal y los que tuvieron presión arterial alta en las primeras horas, se regularizaron a las 36 horasTesi

    A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials

    Get PDF
    The electrochemical carbon dioxide reduction reaction (CO_2RR) presents a viable approach to recycle CO_2 gas into low carbon fuels. Thus, the development of highly active catalysts at low overpotential is desired for this reaction. Herein, a high‐yield synthesis of unique star decahedron Cu nanoparticles (SD‐Cu NPs) electrocatalysts, displaying twin boundaries (TBs) and multiple stacking faults, which lead to low overpotentials for methane (CH_4) and high efficiency for ethylene (C_2H_4) production, is reported. Particularly, SD‐Cu NPs show an onset potential for CH_4 production lower by 0.149 V than commercial Cu NPs. More impressively, SD‐Cu NPs demonstrate a faradaic efficiency of 52.43% ± 2.72% for C_2H_4 production at −0.993 ± 0.0129 V. The results demonstrate that the surface stacking faults and twin defects increase CO binding energy, leading to the enhanced CO_2RR performance on SD‐Cu NPs

    Protocatechuic acid: A novel detoxication agent of fumonisin B1 for poultry industry

    Get PDF
    Fumonisin B1 (FB1) is a major fusarium mycotoxin that largely contaminates feedstuffs and foods, posing a health risk to both animals and humans. This mycotoxin can enter the human body directly through contaminated food consumption or indirectly by toxins and their metabolites. In a prior study, feed-borne FB1 is one of the leading mycotoxins in breeder eggs, leading to reduced hatchability and gizzard ulceration in chicken progenies. Currently, no effective way is available to remove FB1 from feeds and human-contaminated foods. We hypothesize that FB1 can be reduced to low risk by protocatechuic acid (PCA). To assess the ability of FB1 to be degraded in vivo, 1 ppm of FB1 was treated with PCA, or D-glucose, or silymarin, or anti-FB1 monoclonal antibody. Our study revealed that both D-glucose and PCA exhibited 53.4 and 71.43% degradation, respectively, at 80°C for 2 h, while 35.15% of FB1 detoxification was determined in the silymarin group at 60°C for 0.5 h. A dose-dependent manner was found after treatment with D-glucose or PCA at 80°C for 2 h. As for detoxification of anti-FB1 monoclonal antibody, the 1:3,000 dilution induced significant FB1 detoxification, accounting for 25.9% degradation at 25°C for 2 h. Furthermore, 50 SPF 11-day-old embryonated eggs were divided into 10 groups, with five eggs per group. Post treatment with PCA or D-glucose, or silymarin or anti-FB1 monoclonal antibody, the treated samples were inoculated into albumens and monitored daily until the hatching day. Consequently, 100% of the chickens survived in the D-glucose group and other control groups, except for the FB1 control group, while 80, 80, and 60% hatching rates were found in the PCA-treated group, the anti-FB1 monoclonal antibody-treated group, and the silymarin-treated group. Additionally, both the FB1 group and the silymarin-treated group yielded lower embryo growth than other groups did. Postmortem, lower gizzard ulceration index was determined in the PCA-treated group and the anti-FB1 monoclonal antibody-treated group compared to those of the silymarin-treated group and D-glucose-treated group. Based on the above evidence, PCA is a promising detoxification to reduce FB1 contamination in the poultry industry, contributing to the eradication of mycotoxin residuals in the food chain and maintaining food security for human beings

    Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis

    Get PDF
    Platinum-based nanocatalysts play a crucial role in various electrocatalytic systems that are important for renewable, clean energy conversion, storage and utilization. However, the scarcity and high cost of Pt seriously limit the practical application of these catalysts. Decorating Pt catalysts with other transition metals offers an effective pathway to tailor their catalytic properties, but often at the sacrifice of the electrochemical active surface area (ECSA). Here we report a single-atom tailoring strategy to boost the activity of Pt nanocatalysts with minimal loss in surface active sites. By starting with PtNi alloy nanowires and using a partial electrochemical dealloying approach, we create single-nickel-atom-modified Pt nanowires with an optimum combination of specific activity and ECSA for the hydrogen evolution, methanol oxidation and ethanol oxidation reactions. The single-atom tailoring approach offers an effective strategy to optimize the activity of surface Pt atoms and enhance the mass activity for diverse reactions, opening a general pathway to the design of highly efficient and durable precious metal-based catalysts

    Space advanced technology demonstration satellite

    Get PDF
    The Space Advanced Technology demonstration satellite (SATech-01), a mission for low-cost space science and new technology experiments, organized by Chinese Academy of Sciences (CAS), was successfully launched into a Sun-synchronous orbit at an altitude of similar to 500 km on July 27, 2022, from the Jiuquan Satellite Launch Centre. Serving as an experimental platform for space science exploration and the demonstration of advanced common technologies in orbit, SATech-01 is equipped with 16 experimental payloads, including the solar upper transition region imager (SUTRI), the lobster eye imager for astronomy (LEIA), the high energy burst searcher (HEBS), and a High Precision Magnetic Field Measurement System based on a CPT Magnetometer (CPT). It also incorporates an imager with freeform optics, an integrated thermal imaging sensor, and a multi-functional integrated imager, etc. This paper provides an overview of SATech-01, including a technical description of the satellite and its scientific payloads, along with their on-orbit performance

    Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst

    No full text
    Benefiting from the exceptional selective catalytic reduction of NOx with ammonia (NH3-SCR) activity, excellent N2 selectivity, and superior hydrothermal durability, the Cu2+-exchanged zeolite catalyst with a chabazite structure (Cu-CHA) has been considered the predominant SCR catalyst in nitrogen oxide (NOx) abatement. However, sulfur poisoning remains one of the most significant deterrents to the catalyst in real applications. This review summarizes the NH3-SCR reaction mechanism on Cu-CHA, including the active sites and the nature of hydrothermal aging resistance. On the basis of the NH3-SCR reaction mechanism, the review gives a comprehensive summary of sulfate species, sulfate loading, emitted gaseous composition, and the impact of exposure temperature/time on Cu-CHA. The nature of the regeneration of sulfated catalysts is also covered in this review. The review gives a valuable summary of new insights into the matching between the design of NH3-SCR activity and sulfur resistance, highlighting the opportunities and challenges presented by Cu-CHA. Guidance for future sulfur poisoning diagnosis, effective regeneration strategies, and a design for an efficient catalyst for the aftertreatment system (ATS) are proposed to minimize the deterioration of NOx abatement in the future. Finally, we call for more attention to be paid to the effects of PO43- and metal co-cations with sulfur in the ATS

    Carbon-Free Electrocatalyst For Oxygen Reduction And Oxygen Evolution Reactions

    No full text
    A nanoporous Ag-embedded SnO2 thin film was fabricated by anodic treatment of electrodeposited Ag-Sn alloy layers. The ordered nanoporous structure formed by anodization played a key role in enhancing the electrocatalytic performance of the Ag-embedded SnO2 layer in several ways: (1) the roughness factor of the thin film is greatly increased from 23 in the compact layer to 145 in the nanoporous layer, creating additional active sites that are involved in oxygen electrochemical reactions; (2) a trace amount of Ag (∼1.7 at %, corresponding to a Ag loading of ∼3.8 μg cm-2) embedded in the self-organized SnO2 nanoporous matrix avoids the agglomeration of nanoparticles, which is a common problem leading to the electrocatalyst deactivation; (3) the fabricated nanoporous thin film is active without additional additives or porous carbon that is usually necessary to support and stabilize the electrocatalyst. More importantly, the Ag-embedded SnO2 nanoporous thin film shows outstanding bifunctional oxygen electrochemical performance (oxygen reduction and evolution reactions) that is considered a promising candidate for use in metal-air batteries. The present technique has a wide range of applications for the preparation of other carbon-free electrocatalytic nanoporous films that could be useful for renewable energy production and storage applications
    corecore