790 research outputs found

    The Mandarin You Existential: A Verbal Analysis

    Get PDF
    [[abstract]]This paper examines the syntactic status of the element you ‘have’ in the Mandarin existential construction. The basic structure of the you existential is [you NP XP]. In some previous researches, you is seen as a functional head, an Infl or a modal. Under this analysis, the post-you NP is the VP-internal subject that remains in-situ, and XP is the main predicate of the sentence. However, in this paper we propose that you is in fact the main verb of the sentence. The NP is the object of the sentence and XP an adjunct CP. We have several reasons for this claim. First, you behaves very similarly with other verbal yous. Second, the XP exhibits the CED effect, which is a trait of an adjunct expression. Third, the XP shows features of a CP, and therefore is unlikely to be the main predicate of the sentence.[[fileno]]204_JA07_2008_v4_p43[[department]]語言學研究

    Characterization of Soybean Protein Adhesives Modified by Xanthan Gum

    Get PDF
    The aim of this study was to provide a basis for the preparation of medical adhesives from soybean protein sources. Soybean protein (SP) adhesives mixed with different concentrations of xanthan gum (XG) were prepared. Their adhesive features were evaluated by physicochemical parameters and an in vitro bone adhesion assay. The results showed that the maximal adhesion strength was achieved in 5% SP adhesive with 0.5% XG addition, which was 2.6-fold higher than the SP alone. The addition of XG significantly increased the hydrogen bond and viscosity, as well as increased the β-sheet content but decreased the α-helix content in the second structure of protein. X-ray diffraction data showed significant interactions between SP molecules and XG. Scanning electron microscopy observations showed that the surface of SP adhesive modified by XG was more viscous and compact, which were favorable for the adhesion between the adhesive and bone. In summary, XG modification caused an increase in the hydrogen bonding and zero-shear viscosity of SP adhesives, leading to a significant increase in the bond strength of SP adhesives onto porcine bones

    Meta-Analysis of Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Cardiovascular Outcomes and All-Cause Mortality Among Patients With Type 2 Diabetes Mellitus

    Get PDF
    The benefit or risk of sodium glucose cotransporter 2 (SGLT2) inhibitors on cardiovascular (CV) outcomes in patients with type 2 diabetes mellitus has not been established. We aimed to assess the comparative CV safety and mortality risk associated with the use of SGLT2 inhibitors. PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov were systematically searched up to January 27, 2016, to identify randomized controlled trials (RCTs) with the use of SGLT2 inhibitors of at least 24 weeks of duration. The primary outcomes included all-cause mortality and major adverse cardiovascular events. A random-effects network meta-analysis was performed to calculate the odds ratio (OR) with 95% CI. We identified 37 eligible trials involving 29,859 patients that compared 3 SGLT2 inhibitors (canagliflozin, dapagliflozin, and empagliflozin) to placebo and other active antidiabetic treatments. Of all direct and indirect comparisons, only empagliflozin compared with placebo was significantly associated with lower risk of all-cause mortality (OR 0.67, 95% CI 0.56 to 0.81) and major adverse cardiovascular events (OR 0.81, 95% CI 0.70 to 0.93). However, the significant effect of empagliflozin was largely driven by one large randomized trial (EMPA-REG OUTCOME trial). Neither dapagliflozin nor canagliflozin was significantly associated with any harm. In conclusion, current RCT evidence suggests that 3 common SGLT2 inhibitors are not associated with increased risk of all-cause mortality and CV outcomes when used to treat patients with type 2 diabetes mellitus. Although empagliflozin may have a protective effect, further confirmative data from rigorous RCTs are needed

    Role of TFEB Mediated Autophagy, Oxidative Stress, Inflammation, and Cell Death in Endotoxin Induced Myocardial Toxicity of Young and Aged Mice

    Get PDF
    Elderly patients are susceptible to sepsis. LPS induced myocardial injury is a widely used animal model to assess sepsis induced cardiac dysfunction. The age dependent mechanisms behind sepsis susceptibility were not studied. We analyzed age associated changes to cardiac function, cell death, inflammation, oxidative stress, and autophagy in LPS induced myocardial injury. Both young and aged C57BL/6 mice were used for LPS administration. The results demonstrated that LPS induced more cardiac injury (creatine kinase, lactate dehydrogenase, troponin I, and cardiac myosin-light chains 1), cardiac dysfunction (left ventricular inner dimension, LVID, and ejection fraction (EF)), cell death, inflammation, and oxidative stress in aged mice compared to young mice. However, a significant age dependent decline in autophagy was observed. Translocation of Transcription Factor EB (TFEB) to nucleus and formation of LC3-II were significantly reduced in LPS administered aged mice compared to young ones. In addition to that, downstream effector of TFEB, LAMP-1, was induced in response to LPS challenge in young mice. The present study newly demonstrates that TFEB mediated autophagy is crucial for protection against LPS induced myocardial injury particularly in aging senescent heart. Targeting this autophagy-oxidative stress-inflammation-cell death axis may provide a novel therapeutic strategy for cardioprotection in the elderly

    Cancer risk in Chinese diabetes patients: a retrospective cohort study based on management data

    Get PDF
    The excess risk of cancer observed in patients with type 2 diabetes (T2DM) may have been influenced by detection bias. The aim of this study was to examine the real association by evaluating time-varying site-specific cancer risks in newly diagnosed T2DM patients. A total of 51,324 registered cancer-free individuals newly diagnosed with T2DM between 2004 and 2014 were linked with the Shanghai Cancer Registry and the Vital Statistics through September 2015. A total of 2920 primary, invasive cancer cases were identified during 325,354 person-years period. Within 1 year following diabetes onset, participants with T2DM had higher risks of total, lung and rectal cancer in men and total, liver, pancreas, thyroid, breast and uteri cancer in women. Thereafter the incidence for overall cancer decreased and then increased along with follow-up time, with the upward trend varying by cancer, suggesting potential detection bias. After the initial 1-year period, standardized incidence ratios (SIR) and 95% CIs for overall cancer were 0.80 (95% CI 0.76–0.85) in men and 0.93 (95% CI 0.88–0.99) in women, but a higher risk of breast and thyroid cancers were observed in women, with SIR and 95% CI being 1.13 (1.01, 1.28) and 1.37 (1.11, 1.63), respectively. Our results suggest that T2DM patients are at higher risk of certain cancers; this risk particularly increases shortly after diabetes diagnosis, which is likely to be due to detection bias caused by increased ascertainment. Prevention of female breast and thyroid cancers should be paid attention in Chinese individuals with T2DM

    Direct prediction of antimicrobial resistance in Pseudomonas aeruginosa by metagenomic next-generation sequencing

    Get PDF
    ObjectivePseudomonas aeruginosa has strong drug resistance and can tolerate a variety of antibiotics, which is a major problem in the management of antibiotic-resistant infections. Direct prediction of multi-drug resistance (MDR) resistance phenotypes of P. aeruginosa isolates and clinical samples by genotype is helpful for timely antibiotic treatment.MethodsIn the study, whole genome sequencing (WGS) data of 494 P. aeruginosa isolates were used to screen key anti-microbial resistance (AMR)-associated genes related to imipenem (IPM), meropenem (MEM), piperacillin/tazobactam (TZP), and levofloxacin (LVFX) resistance in P. aeruginosa by comparing genes with copy number differences between resistance and sensitive strains. Subsequently, for the direct prediction of the resistance of P. aeruginosa to four antibiotics by the AMR-associated features screened, we collected 74 P. aeruginosa positive sputum samples to sequence by metagenomics next-generation sequencing (mNGS), of which 1 sample with low quality was eliminated. Then, we constructed the resistance prediction model.ResultsWe identified 93, 88, 80, 140 AMR-associated features for IPM, MEM, TZP, and LVFX resistance in P. aeruginosa. The relative abundance of AMR-associated genes was obtained by matching mNGS and WGS data. The top 20 features with importance degree for IPM, MEM, TZP, and LVFX resistance were used to model, respectively. Then, we used the random forest algorithm to construct resistance prediction models of P. aeruginosa, in which the areas under the curves of the IPM, MEM, TZP, and LVFX resistance prediction models were all greater than 0.8, suggesting these resistance prediction models had good performance.ConclusionIn summary, mNGS can predict the resistance of P. aeruginosa by directly detecting AMR-associated genes, which provides a reference for rapid clinical detection of drug resistance of pathogenic bacteria

    High-altitude cerebral hypoxia promotes mitochondrial dysfunction and apoptosis of mouse neurons

    Get PDF
    IntroductionNeuronal cell death is an important factor in the pathogenesis of acute high-altitude cerebral hypoxia; however, the underlying molecular mechanism remains unclear. In this study, we tested if high-altitude hypoxia (HAH) causes neuronal death and mitochondrial dysfunction using various in vivo and in vitro approaches.MethodsAcute high-altitude cerebral hypoxia was induced by hypobaric hypoxia chamber in male mice. we explored the mechanisms of neuronal cell death using immunofluorescence, western blotting, transmission electron microscopy, and flow cytometry. Next, mitochondrial function and morphology were observed using Jc-1 staining, seahorse assay, western blotting, MitoTracker staining, and transmission electron microscopy. Moreover, open field test, elevated plus test, and Morris water maze were applied for animal behavior.ResultsResults revealed that HAH disrupted mitochondrial function and promoted neuronal apoptosis and necroptosis both in HT-22 cells and in mouse hippocampal neurons. Moreover, the mitochondrial membrane potential and adenosine triphosphate production decreased in neurons after HAH, while oxidative stress and mitochondrial fission increased. Behavioral studies suggested that HAH induced anxiety-like behavior and impaired spatial memory, while it had no effect on athletic ability.DiscussionThese findings demonstrated that HAH promotes mitochondrial dysfunction and apoptosis of mouse neurons, thus providing new insights into the role of mitochondrial function and neuronal cell death in acute high-altitude cerebral hypoxia
    corecore