66 research outputs found

    Dynamical fluctuations in critical regime and across the 1st order phase transition

    Full text link
    In this proceeding, we study the dynamical evolution of the sigma field within the framework of Langevin dynamics. We find that, as the system evolves in the critical regime, the magnitudes and signs of the cumulants of sigma field, C3C_{3} and C4C_{4}, can be dramatically different from the equilibrated ones due to the memory effects near TcT_c. For the dynamical evolution across the 1st order phase transition boundary, the supercooling effect leads the sigma field to be widely distributed in the thermodynamical potential, which largely enhances the cumulants C3, C4C_3, \ C_4, correspondingly.Comment: 4 pages, 2 figures, proceedings for Quark Matter 201

    Enhancements of high order cumulants across the 1st order phase transition boundary

    Full text link
    In this proceeding, we investigate the dynamical evolution of the σ\sigma field with a trajectory across the 1st order phase transition boundary, using Langevin dynamics from the linear sigma model. We find the high order cumulants of the σ\sigma field are largely enhanced during the dynamical evolution, compared with the equilibrium values, due to the supercooling effect of the first order phase transition.Comment: 4 pages, 2 figures, SQM proceeding, with minor change

    Metabolic Syndrome During Perinatal Period in Sows and the Link With Gut Microbiota and Metabolites

    Get PDF
    In humans, the metabolic and immune changes occurring during perinatal period also describe metabolic syndrome. Gut microbiota can cause symptoms of metabolic syndrome in pregnant women. Increased gut permeability is also involved in metabolic disorders in non-pregnant hosts. However, longitudinal studies investigating the changes in metabolic characteristics, gut microbiota, and gut permeability of sows throughout pregnancy and lactation are lacking. The correlation between gut microbiota and metabolic status of sows is also poorly known. The present study was conducted to investigate the temporal variations in sow metabolic characteristics, gut microbiota, gut permeability, and gut inflammation at days 30 (G30) and 109 (G109) of gestation and days 3 (L3) and 14 (L14) of lactation. Results showed that insulin sensitivity was decreased in L3. Circulating concentrations of pro-inflammatory cytokine IL-6 increased in G109 and L3. 16S rRNA gene sequencing of the V3-V4 region showed that gut microbiota changed dramatically across different reproductive stages. The bacterial abundance and alpha diversity in L3 were the lowest. The phyla Proteobacteria and Fusobacteria exhibited the highest relative abundance in L3. Among the genera, Bacteroides, Escherichia_Shigella, and Fusobacterium were highest, but Oscillospira the lowest, in relative abundance in L3. The fecal levels of acetate and total short-chain fatty acids were increased in G109, but fecal butyrate concentrations were markedly decreased in L3. The plasma zonulin concentrations, a biomarker for gut permeability, were increased in G109 and L3. The plasma endotoxin concentrations were increased in L3. Furthermore, levels of fecal lipocalin-2 and pro-inflammatory cytokines IL-6 and TNF-α were increased in G109 and L3. In contrast, fecal levels of anti-inflammatory cytokine IL-10 were significantly decreased in G109 and L3. Additionally, the increased relative abundances of Fusobacterium in L3 were positively correlated with plasma zonulin and fecal endotoxin but negatively correlated with fecal IL-10. These findings indicate that the mother sow exhibits a metabolic syndrome and dramatical changes in gut microbiota during perinatal period, especially in early lactation. Besides, increased gut permeability and plasma endotoxin concentrations caused by negative microbial changes would possibly be the potential mechanisms under which sow’s metabolic disorders and inflammatory status were exacerbated during early lactation

    Anisotropic Magnetotransport and Exotic Longitudinal Linear Magnetoresistance in WTe2 Crystals

    Full text link
    WTe2 semimetal, as a typical layered transition-metal dichalcogenide, has recently attracted much attention due to the extremely large, non-saturating parabolic magnetoresistance in perpendicular field. Here, we report a systematic study of the angular dependence of the magnetoresistance in WTe2 single crystal. The violation of the Kohler rule and a significant anisotropic magnetotransport behavior in different magnetic field directions are observed. Surprisingly, when the applied field is parallel to the tungsten chains of WTe2, an exotic large longitudinal linear magnetoresistance as high as 1200% at 15 T and 2 K is identified. Violation of the Kohler rule in transverse magnetoresistance can be understood based on a dual effect of the excitons formation and thermal activation, while large longitudinal linear magnetoresistance reflects perfectly the scattering and nesting of quasi-1D nature of this balanced hole-electron system. Our work will stimulate studies of such double-carrier correlated material and corresponding quantum physics

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Enhancements of high order cumulants across the 1st order phase transition boundary

    No full text
    In this proceeding, we investigate the dynamical evolution of the σ field with a trajectory across the 1st order phase transition boundary, using the Langevin equation from the linear sigma model. We find the high order cumulants of the σ field are largely enhanced during the dynamical evolution, compared with the equilibrium values, due to the supercooling effect of the first order phase transition

    Enhancements of high order cumulants across the 1st order phase transition boundary

    No full text
    In this proceeding, we investigate the dynamical evolution of the σ field with a trajectory across the 1st order phase transition boundary, using the Langevin equation from the linear sigma model. We find the high order cumulants of the σ field are largely enhanced during the dynamical evolution, compared with the equilibrium values, due to the supercooling effect of the first order phase transition
    • …
    corecore