206 research outputs found

    Worst case tractability of L2L_2-approximation for weighted Korobov spaces

    Full text link
    We study L2L_2-approximation problems APPd\text{APP}_d in the worst case setting in the weighted Korobov spaces H_{d,\a,{\bm \ga}} with parameter sequences {\bm \ga}=\{\ga_j\} and \a=\{\az_j\} of positive real numbers 1\ge \ga_1\ge \ga_2\ge \cdots\ge 0 and \frac1 2<\az_1\le \az_2\le \cdots. We consider the minimal worst case error e(n,APPd)e(n,\text{APP}_d) of algorithms that use nn arbitrary continuous linear functionals with dd variables. We study polynomial convergence of the minimal worst case error, which means that e(n,APPd)e(n,\text{APP}_d) converges to zero polynomially fast with increasing nn. We recall the notions of polynomial, strongly polynomial, weak and (t1,t2)(t_1,t_2)-weak tractability. In particular, polynomial tractability means that we need a polynomial number of arbitrary continuous linear functionals in dd and \va^{-1} with the accuracy \va of the approximation. We obtain that the matching necessary and sufficient condition on the sequences {\bm \ga} and \a for strongly polynomial tractability or polynomial tractability is \dz:=\liminf_{j\to\infty}\frac{\ln \ga_j^{-1}}{\ln j}>0, and the exponent of strongly polynomial tractability is p^{\text{str}}=2\max\big\{\frac 1 \dz, \frac 1 {2\az_1}\big\}.$

    Tip induced unconventional superconductivity on Weyl semimetal TaAs

    Full text link
    Weyl fermion is a massless Dirac fermion with definite chirality, which has been long pursued since 1929. Though it has not been observed as a fundamental particle in nature, Weyl fermion can be realized as low-energy excitation around Weyl point in Weyl semimetal, which possesses Weyl fermion cones in the bulk and nontrivial Fermi arc states on the surface. As a firstly discovered Weyl semimetal, TaAs crystal possesses 12 pairs of Weyl points in the momentum space, which are topologically protected against small perturbations. Here, we report for the first time the tip induced superconductivity on TaAs crystal by point contact spectroscopy. A conductance plateau and sharp double dips are observed in the point contact spectra, indicating p-wave like unconventional superconductivity. Furthermore, the zero bias conductance peak in low temperature regime is detected, suggesting potentially the existence of Majorana zero modes. The experimentally observed tunneling spectra can be interpreted with a novel mirror-symmetry protected topological superconductor induced in TaAs, which can exhibit zero bias and double finite bias peaks, and double conductance dips in the measurements. Our work can open a broad avenue in search for new topological superconducting phases from topological Weyl materials and trigger intensive investigations for pursuing Majorana fermions

    CO2 capture performance using biomass-templated cement-supported limestone pellets

    Get PDF
    Synthetic biomass-templated cement-supported CaO-based sorbents were produced by granulation process for high-temperature post-combustion CO2 capture. Commercial flour was used as the biomass and served as a templating agent. The investigation of porosity showed that the pellets with biomass or cement resulted in enhancement of porosity. Four types of sorbents containing varying proportions of biomass and cement were subject to 20 cycles in a TGA under different calcination conditions. After first series of tests calcined at 850 °C in 100% N2, all composite sorbents clearly exhibited higher CO2 capture activity compared to untreated limestone with exception of sorbents doped by seawater. The biomass-templated cement-supported pellets exhibited the highest CO2 capture level of 46.5% relative to 20.8% for raw limestone after 20 cycles. However, the observed enhancement in performance was substantially reduced under 950 °C calcination condition. Considering the fact that both sorbents supported by cement exhibited relatively high conversion with a maximum value of 19.5%, cement promoted sorbents appear to be better at resisting of harsh calcination conditions. Although flour as biomass-templated material generated significantly enhancement in CO2 capture capacity, further exploration must be carried out to find the way of maintaining outstanding performance for CaO-based sorbents under severe reaction conditions

    Spatiotemporal expression of histone acetyltransferases, p300 and CBP, in developing embryonic hearts

    Get PDF
    Histone acetyltransferases (HATs), p300 and cAMP response element binding protein (CREB)-binding protein (CBP) are two structurally related transcriptional co-activators that activate expression of many eukaryotic genes involved in cellular growth and signaling, muscle differentiation and embryogenesis. However, whether these proteins play important and different roles in mouse cardiogenesis is not clear. Here, we investigate the protein distributions and mRNA expression of the two HATs in embryonic and adult mouse heart during normal heart development by using immunohistochemical and RT-PCR techniques. The data from immunohistochemical experiments revealed that p300 was extensively present in nearly every region of the hearts from embryonic stages to the adulthood. However, no CBP expression was detected in embryonic hearts at day E7.5. CBP expression appeared at the later stages, and the distribution of CBP was less than that of p300. In the developmental hearts after E10.5, both for p300 and CBP, the mRNA expression levels reached a peak on day E10.5, and then were gradually decreased afterwards. These results reveal that both p300 and CBP are related to embryonic heart development. The dynamic expression patterns of these two enzymes during mouse heart development indicate that they may play an important role on heart development. However, there is a difference in spatiotemporal expression patterns between these two enzymes during heart development. The expression of p300 is earlier and more predominate, suggesting that p300 may play a more important role in embryonic heart development especially during cardiac precursor cell induction and interventricular septum formation

    Physics perspectives of heavy-ion collisions at very high energy

    Full text link
    Heavy-ion collisions at very high colliding energies are expected to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. We illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.Comment: 35 pages in Latex, 29 figure

    Optimal dispatch based on prediction of distributed electric heating storages in combined electricity and heat networks

    Get PDF
    The volatility of wind power generations could significantly challenge the economic and secure operation of combined electricity and heat networks. To tackle this challenge, this paper proposes a framework of optimal dispatch with distributed electric heating storage based on a correlation-based long short-term memory prediction model. The prediction model of distributed electric heating storage is developed to model its behavior characteristics which are obtained by the autocorrelation and correlation analysis with external factors including weather and time-of-use price. An optimal dispatch model of combined electricity and heat networks is then formulated and resolved by a constraint reduction technique with clustering and classification. Our method is verified through numerous simulations. The results show that, compared with the state-of-the-art techniques of support vector machine and recurrent neural networks, the mean absolute percentage error with the proposed correlation-based long short-term memory can be reduced by 1.009 and 0.481 respectively. Compared with conventional method, the peak wind power curtailment with dispatching distributed electric heating storage is reduced by nearly 30% and 50% in two cases respectively
    • …
    corecore