37 research outputs found
High-Sensitivity Vector Bend Sensor Based on a Fiber Directional Coupler Inscribed by a Femtosecond Laser
In this Letter, we demonstrate a high-sensitivity vector bend sensor based on a fiber directional coupler. The fiber directional coupler is composed of two parallel waveguides inscribed within a no-core fiber (NCF) by a femtosecond laser. Since the two written waveguides have closely matched refractive indices and geometries, the transmission spectrum of the fiber directional coupler possesses periodic resonant dips. Such a fiber directional coupler exhibits a good bending-dependent spectral shift response due to its asymmetric structure. Experimental results show that bending sensitivities of -97.11 nm/m-1 and 58.22 nm/m-1 are achieved for the 0° and 180° orientations in the curvature range of 0-0.62 m-1, respectively. In addition, the proposed fiber directional coupler is shown to be insensitive to external humidity changes, thus improving its suitability in high-accuracy bending measurements
Simultaneous Measurement of Gas Pressure and Temperature Using a Microbubble Resonator Combined With an FBG
We propose and demonstrate a microbubble resonator combined with a fiber Bragg grating (FBG) for simultaneous measurement of gas pressure and temperature. The approach used allows for very close proximity (\u3c200 \u3eμm) between the FBG and the microbubble resonator. The microbubble resonator is fabricated in a section of hollow-core fiber (HCF), spliced to a single-mode fiber (SMF) with a pre-inscribed FBG to form a single-ended open structure. Fresnel reflection from the HCF cleaved end means that broadband light is reflected backwards in the same direction as the Bragg wavelength from the FBG. A tapered fiber couples the reflected broadband light to the microbubble, and both the Bragg peak and whispering gallery modes (WGM) are distinguishable in the signal available for interrogation. The experimental results show that this sensor structure consisting of a microbubble resonator combined with an FBG has the ability to simultaneously measure gas pressure and temperature, while also eliminating temperature crosstalk in gas pressure measurement and providing a useful platform for high accuracy gas pressure detection
RUNX2 Plays An Oncogenic Role in Esophageal Carcinoma by Activating the PI3K/AKT and ERK Signaling Pathways
Background/Aims: Esophageal carcinoma is a frequently occurring cancer at upper gastrointestinal tract. We aimed to evaluate the roles and possible mechanism of Runt Related Transcription Factor 2 (RUNX2) in the development of esophageal cancer. Methods: The expression of RUNX2 in esophageal carcinoma tissues and cells was investigated by qRT-PCR. Effects of RUNX2 on cell viability, apoptosis, migration and invasion were assessed using MTT assay, flow cytometry assay/western blot analysis, and Transwell assays, respectively. Afterwards, effects of RUNX2 on of the activation of the PI3K/AKT and ERK pathways were explored by Western blot analysis. In addition, a PI3K/AKT pathway inhibitor LY294002 and an ERK inhibitor U0126 were applied to further verify the regulatory relationship between RUNX2 and the PI3K/AKT and ERK signaling pathways. Besides, the RUNX2 function on tumor formation in vivo was investigated by tumor xenograft experiment. Results: The result showed that RUNX2 was highly expressed in esophageal carcinoma tissues and cells. Knockdown of RUNX2 significantly inhibited TE-1 and EC-109 cell viability, repressed TE-1 cell migration and invasion, and increased TE-1 cell apoptosis. RUNX2 overexpression showed the opposite effects on HET-1A cells. Moreover, RUNX2-mediated TE-1 cell viability, migration and invasion were associated with the activation of the PI3K/AKT and ERK pathways. Besides, knockdown of RUNX2 markedly suppressed tumor formation in vivo. Conclusion: Our results indicate that RUNX2 may play an oncogenic role in esophageal carcinoma by activating the PI3K/ AKT and ERK pathways. RUNX2 may serve as a potent target for the treatment of esophageal carcinoma
Recommended from our members
A topological Hund nodal line antiferromagnet
The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory, and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry, and nonsymmorphic lattice symmetry. The corresponding drumhead surface states traverse the whole surface Brillouin zone. YMn2Ge2 thus serves as a platform to exhibit the interplay of multiple degenerate nodal physics and antiferromagnetism. Interestingly, the magnetic nodal line displays a d-orbital dependent renormalization along its trajectory in momentum space, thereby manifesting Hund's coupling. Our findings offer insights into the effect of electronic correlations on magnetic Dirac nodal lines, leading to an antiferromagnetic Hund nodal line
Relationship between sheep feces scores and gastrointestinal microorganisms and their effects on growth traits and blood indicators
Fecal scores are crucial for assessing the digestive and gastrointestinal status of animals. The Bristol fecal scoring system is a commonly used method for the subjective evaluation of host feces, there is limited research on fecal scoring standards for fattening Hu sheep. In this study, Hu sheep were collected for rumen, rectum, and colon contents for 16S rDNA sequencing. 514 Hu sheep feces were scored based on the Bristol fecal scoring system, and production performance at each stage was measured. Finally, we developed the scoring standard of the manure of Hu sheep in the fattening period (a total of five grades). The result shows that moisture content significantly increased with higher grades (p < 0.05). We analyzed the relationship between fecal scores and production traits, blood indices, muscle nutrients, and digestive tract microorganisms. The growth traits (body weight, body height, body length, average daily gain (ADG), and average daily feed intake (ADFI) during 80–180 days), body composition traits of the F3 group, and the carcass traits were found to be significantly higher (p < 0.05) than those of the F1 and F2 groups. There was no significant difference in gastrointestinal microflora diversity among all groups (p > 0.05). Significant differences were observed in Aspartate aminotransferase, Glucose, Total bilirubin, and Red Blood Cell Count between groups (p < 0.05). The mutton moisture content in group F4 was significantly higher than in the other groups, and the protein content was also the lowest (p < 0.05). The results of the correlation analysis demonstrated that Actinobacteria, Peptostreptococcaceae, Acidaminococcales, Gammaproteobacteria, and Proteobacteria were the significant bacteria affecting fecal scores. In addition, Muribaculaceae and Oscillospiraceae were identified as the noteworthy flora affecting growth performance and immunity. This study highlights the differences in production traits and blood indicators between fecal assessment groups and the complex relationship between intestinal microbiota and fecal characteristics in Hu sheep, suggesting potential impacts on animal performance and health, which suggest strategies for improved management
An Acquisition Method of Agricultural Equipment Roll Angle Based on Multi-Source Information Fusion
Accurately obtaining roll angles is one of the key technologies to improve the positioning accuracy and operation quality of agricultural equipment. Given the demand for the acquisition of agricultural equipment roll angles, a roll angle monitoring model based on Kalman filtering and multi-source information fusion was established by using the MTi-300 AHRS inertial sensor (INS) and XW-GI 5630 BeiDou Navigation Satellite System (BDS), which were installed on agricultural equipment. Data of the INS and BDS were fused by MATLAB; then, Kalman filter was used to optimize the data, and the state equation and measurement equation of the integrated system were established. Then, an integrated monitoring terminal man–machine interactive interface was designed on MATLAB GUI, and a roll angle monitoring system based on the INS and BDS was designed and applied into field experiments. The mean absolute error of the integrated monitoring system based on multi-source information fusion during field experiments was 0.72°, which was smaller compared with the mean absolute errors of roll angle monitored by the INS and BDS independently (0.78° and 0.75°, respectively). Thus, the roll angle integrated model improves monitoring precision and underlies future research on navigation and independent operation of agricultural equipment
Decarbonization scenarios and carbon reduction potential for China’s road transportation by 2060
Abstract The transportation sector is a crucial source of greenhouse gas emissions, and the degree of its low-carbon transformation is closely related to the achievement of China’s carbon neutrality. Based on high-frequency passenger vehicle sales data and motor vehicle real-time monitoring big data, we developed a low-carbon transition planning model of China road transport (CRT-LCTP) to explore the pathways toward carbon neutrality. The study found that although the number of new energy vehicles (NEVs) increased four times from 2016 to 2019, the average annual growth rate of road traffic emissions was still as high as 20.5%. The current transportation electrification may only reduce 0.6% of the total emissions in this sector, and it could be increased to 1.4% if the electricity completely came from clean energy. Under the enhanced policy scenario, the transport sector could peak its carbon emissions at around of 2030, with the peak level being 1330.98 Mt. Transportation electrification along could not meet the climate targets in 2060, and the continued inertia of fuel vehicles will slow the path of the road transport toward carbon neutrality, which depends on the forced elimination of fuel vehicles and more substantive decarbonization measures
Optical spectrum adjustment of yellow-green Sr1.99SiO4-3x/2Nx:0.01Eu(2+) phosphor powders for near ultraviolet-visible light application
Si3N4 doped yellow-green Sr1.99SiO4-3x/2Nx:0.01Eu(2+) phosphors were synthesized through the solid-state reaction technique in reduced air condition. Under the excitation of near ultraviolet and visible light, the emission spectra showed a broad band peaking at 540 nm, which originated from the 4f(6)5d(1) -> 4f(7) transitions of Eu2+ ions. There is a significant improvement in the luminescence efficiency with the addition of Si3N4. Under the excitation of 370 nm light, the Sr1.99SiO4-3x/2Nx:0.01Eu(2+) displayed distinct shoulders ranging from 450 nm to 550 nm. It was attributed to Eu2+ ions occupying the lattice sites of Sr2+ and forming two different luminescence center of Eu(I) and Eu(II). Meanwhile, the fluorescent decay lifetime of Sr2SiO4:Eu2+ phosphor was prolonged remarkably by addition of Si3N4. CIE chromaticity coordinates showed that the emission spectra gradually shifted from green to yellow region, with the increase of N concentration. (C) 2015 Elsevier B.V. All rights reserved