2,424 research outputs found

    Application of RNA silencing to plant disease resistance

    Get PDF
    To reduce the losses caused by plant pathogens, plant biologists have adopted numerous methods to engineer resistant plants. Among them, RNA silencing-based resistance has been a powerful tool that has been used to engineer resistant crops during the last two decades. Based on this mechanism, diverse approaches were developed. In this review, we focus on the application of RNA silencing to produce plants that are resistant to plant viruses such as RNA and DNA viruses, viroids, insects, and the recent expansion to fungal pathogens

    The Entanglement in Anisotropic Heisenberg XYZ Chain with inhomogeneous magnetic field

    Full text link
    The thermal entanglement of a two-qubit anisotropic Heisenberg XYZXYZ chain under an inhomogeneous magnetic field b is studied. It is shown that when inhomogeneity is increased to certain value, the entanglement can exhibit a larger revival than that of less values of b. The property is both true for zero temperature and a finite temperature. The results also show that the entanglement and critical temperature can be increased by increasing inhomogeneous exteral magnetic field

    Identification of biomarkers and mechanisms of diabetic cardiomyopathy using microarray data

    Get PDF
    Background: The study aimed to uncover the regulation mechanisms of diabetic cardiomyopathy (DCM) and provide novel prognostic biomarkers. Methods: The dataset GSE62203 downloaded from the Gene Expression Omnibus database was utilized in the present study. After pretreatment using the Affy package, differentially expressed genes (DEGs) were identified by the limma package, followed by functional enrichment analysis and protein– protein interaction (PPI) network analysis. Furthermore, module analysis was conducted using MCODE plug-in of Cytoscape, and functional enrichment analysis was also performed for genes in the modules. Results: A set of 560 DEGs were screened, mainly enriched in the metabolic process and cell cycle related process. Hub nodes in the PPI network were LDHA (lactate dehydrogenase A), ALDOC (aldolase C, fructose-bisphosphate) and ABCE1 (ATP Binding Cassette Subfamily E Member 1), which were also highlighted in Module 1 or Module 2 and predominantly enriched in the processes of glycolysis and ribosome biogenesis. Additionally, LDHA were linked with ALDOC in the PPI network. Besides, activating transcription factor 4 (ATF4) was prominent in Module 3; while myosin heavy chain 6 (MYH6) was highlighted in Module 4 and was mainly involved in muscle cells related biological processes. Conclusions: Five potential biomarkers including LDHA, ALDOC, ABCE1, ATF4 and MYH6 were identified for DCM prognosis

    Remote generation of entanglement for individual atoms via optical fibers

    Full text link
    The generation of atomic entanglement is discussed in a system that atoms are trapped in separate cavities which are connected via optical fibers. Two distant atoms can be projected to Bell-state by synchronized turning off the local laser fields and then performing a single quantum measurement by a distant controller. The distinct advantage of this scheme is that it works in a regime that Δκg\Delta\approx\kappa\gg g, which makes the scheme insensitive to cavity strong leakage. Moreover, the fidelity is not affected by atomic spontaneous emission.Comment: 4 pages, 3 figure

    The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that excess reducing equivalents in the form of NADPH in chloroplasts can be transported via shuttle machineries, such as the malate-oxaloacetate (OAA) shuttle, into the mitochondria, where they are efficiently oxidised by the mitochondrial alternative oxidase (AOX) respiratory pathway. Therefore, it has been speculated that the AOX pathway may protect plants from photoinhibition, but the mechanism by which this protection occurs remains to be elucidated.</p> <p>Results</p> <p>The observation that the malate-OAA shuttle activity and the AOX pathway capacity increased markedly after intense light treatment in <it>Rumex </it>K-1 leaves indicates that excess NADPH was transported from the chloroplasts and oxidised by the AOX pathway. The inhibition of the AOX pathway by salicylhydroxamic acid (SHAM) caused the over-reduction of the photosystem I (PSI) acceptor side, as indicated by the increases in the extent of reduction of P700<sup>+</sup>. Furthermore, the photosynthetic linear electron flow was restricted, which was indicated by the decreases in the PSII electron transport rate (ETR) and the photosynthetic O<sub>2 </sub>evolution rate. The restriction of the photosynthetic linear electron flow, which generates the thylakoid ΔpH, inevitably decreased the de-epoxidation of the xanthophyll cycle (ΔPRI). Therefore, the induction of non-photochemical quenching (NPQ) was suppressed when the AOX pathway was inhibited. The effect of the inhibition of the AOX pathway on NPQ induction was less at 20 mM NaHCO<sub>3 </sub>than at 1 mM NaHCO<sub>3</sub>. The suppression of NPQ induction by the inhibition of the AOX pathway was also observed during the induction phase of photosynthesis. In addition, the inhibition of the AOX pathway increased the accumulation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), suggesting that the AOX pathway functions as an antioxidant mechanism.</p> <p>Conclusions</p> <p>The inhibition of the AOX pathway resulted in the rapid accumulation of NADPH in the chloroplasts, which caused the over-reduction of the PSI acceptor side. Furthermore, the restriction of the photosynthetic linear electron flow due to the inhibition of the AOX pathway limited the generation of the thylakoid ΔpH and suppressed the induction of NPQ. Therefore, the mitochondrial AOX pathway protected the photosynthetic apparatus against photodamage by alleviating the over-reduction of the PSI acceptor side and accelerating the induction of NPQ in <it>Rumex </it>K-1 leaves.</p

    CMV2b-AGO Interaction Is Required for the Suppression of RDR-Dependent Antiviral Silencing in Arabidopsis.

    Full text link
    peer reviewedUsing a transient plant system, it was previously found that the suppression of Cucumber mosaic virus (CMV) 2b protein relies on its double-strand (ds) RNA binding capacity, but it is independent of its interaction with ARGONAUTE (AGO) proteins. Thus, the biological meaning of the 2b-AGO interaction in the context of virus infection remains elusive. In this study, we created infectious clones of CMV mutants that expressed the 2b functional domains of dsRNA or AGO binding and tested the effect of these CMV mutants on viral pathogenicity. We found that the mutant CMV2b(1-76) expressing the 2b dsRNA-binding domain exhibited the same virulence as wild-type CMV in infection with either wild-type Arabidopsis or rdr1/6 plants with RDR1- and RDR6-deficient mutations. However, remarkably reduced viral RNA levels and increased virus (v)siRNAs were detected in CMV2b(1-76)-infected Arabidopsis in comparison to CMV infection, which demonstrated that the 2b(1-76) deleted AGO-binding domain failed to suppress the RDR1/RDR6-dependent degradation of viral RNAs. The mutant CMV2b(8-111) expressing mutant 2b, in which the N-terminal 7 amino acid (aa) was deleted, exhibited slightly reduced virulence, but not viral RNA levels, in both wild-type and rdr1/6 plants, which indicated that 2b retained the AGO-binding activity acquired the counter-RDRs degradation of viral RNAs. The deletion of the N-terminal 7 aa of 2b affected virulence due to the reduced affinity for long dsRNA. The mutant CMV2b(18-111) expressing mutant 2b lacked the N-terminal 17 aa but retained its AGO-binding activity greatly reduced virulence and viral RNA level. Together with the instability of both 2b(18-111)-EGFP and RFP-AGO4 proteins when co-expressed in Nicotiana benthamiana leaves, our data demonstrates that the effect of 2b-AGO interaction on counter-RDRs antiviral defense required the presence of 2b dsRNA-binding activity. Taken together, our findings demonstrate that the dsRNA-binding activity of the 2b was essential for virulence, whereas the 2b-AGO interaction was necessary for interference with RDR1/6-dependent antiviral silencing in Arabidopsis

    Nicotiana small RNA sequences support a host genome origin of Cucumber mosaic virus satellite RNA

    Get PDF
    Satellite RNAs (satRNAs) are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS) transgene fused with a Cucumber mosaic virus (CMV) Y satellite RNA (Y-Sat) sequence (35S-GUS:Sat) was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM) to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs

    Nicotiana Small RNA Sequences Support a Host Genome Origin of Cucumber Mosaic Virus Satellite RNA

    Get PDF
    Satellite RNAs (satRNAs) are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS) transgene fused with a Cucumber mosaic virus (CMV) Y satellite RNA (Y-Sat) sequence (35S-GUS:Sat) was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM) to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRN
    corecore